Evaluate
\frac{332}{27}\approx 12.296296296
Factor
\frac{2 ^ {2} \cdot 83}{3 ^ {3}} = 12\frac{8}{27} = 12.296296296296296
Share
Copied to clipboard
\begin{array}{l}\phantom{8262)}\phantom{1}\\8262\overline{)101592}\\\end{array}
Use the 1^{st} digit 1 from dividend 101592
\begin{array}{l}\phantom{8262)}0\phantom{2}\\8262\overline{)101592}\\\end{array}
Since 1 is less than 8262, use the next digit 0 from dividend 101592 and add 0 to the quotient
\begin{array}{l}\phantom{8262)}0\phantom{3}\\8262\overline{)101592}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101592
\begin{array}{l}\phantom{8262)}00\phantom{4}\\8262\overline{)101592}\\\end{array}
Since 10 is less than 8262, use the next digit 1 from dividend 101592 and add 0 to the quotient
\begin{array}{l}\phantom{8262)}00\phantom{5}\\8262\overline{)101592}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101592
\begin{array}{l}\phantom{8262)}000\phantom{6}\\8262\overline{)101592}\\\end{array}
Since 101 is less than 8262, use the next digit 5 from dividend 101592 and add 0 to the quotient
\begin{array}{l}\phantom{8262)}000\phantom{7}\\8262\overline{)101592}\\\end{array}
Use the 4^{th} digit 5 from dividend 101592
\begin{array}{l}\phantom{8262)}0000\phantom{8}\\8262\overline{)101592}\\\end{array}
Since 1015 is less than 8262, use the next digit 9 from dividend 101592 and add 0 to the quotient
\begin{array}{l}\phantom{8262)}0000\phantom{9}\\8262\overline{)101592}\\\end{array}
Use the 5^{th} digit 9 from dividend 101592
\begin{array}{l}\phantom{8262)}00001\phantom{10}\\8262\overline{)101592}\\\phantom{8262)}\underline{\phantom{9}8262\phantom{9}}\\\phantom{8262)9}1897\\\end{array}
Find closest multiple of 8262 to 10159. We see that 1 \times 8262 = 8262 is the nearest. Now subtract 8262 from 10159 to get reminder 1897. Add 1 to quotient.
\begin{array}{l}\phantom{8262)}00001\phantom{11}\\8262\overline{)101592}\\\phantom{8262)}\underline{\phantom{9}8262\phantom{9}}\\\phantom{8262)9}18972\\\end{array}
Use the 6^{th} digit 2 from dividend 101592
\begin{array}{l}\phantom{8262)}000012\phantom{12}\\8262\overline{)101592}\\\phantom{8262)}\underline{\phantom{9}8262\phantom{9}}\\\phantom{8262)9}18972\\\phantom{8262)}\underline{\phantom{9}16524\phantom{}}\\\phantom{8262)99}2448\\\end{array}
Find closest multiple of 8262 to 18972. We see that 2 \times 8262 = 16524 is the nearest. Now subtract 16524 from 18972 to get reminder 2448. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }2448
Since 2448 is less than 8262, stop the division. The reminder is 2448. The topmost line 000012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}