Evaluate
91
Factor
7\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{1110)}\phantom{1}\\1110\overline{)101010}\\\end{array}
Use the 1^{st} digit 1 from dividend 101010
\begin{array}{l}\phantom{1110)}0\phantom{2}\\1110\overline{)101010}\\\end{array}
Since 1 is less than 1110, use the next digit 0 from dividend 101010 and add 0 to the quotient
\begin{array}{l}\phantom{1110)}0\phantom{3}\\1110\overline{)101010}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101010
\begin{array}{l}\phantom{1110)}00\phantom{4}\\1110\overline{)101010}\\\end{array}
Since 10 is less than 1110, use the next digit 1 from dividend 101010 and add 0 to the quotient
\begin{array}{l}\phantom{1110)}00\phantom{5}\\1110\overline{)101010}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101010
\begin{array}{l}\phantom{1110)}000\phantom{6}\\1110\overline{)101010}\\\end{array}
Since 101 is less than 1110, use the next digit 0 from dividend 101010 and add 0 to the quotient
\begin{array}{l}\phantom{1110)}000\phantom{7}\\1110\overline{)101010}\\\end{array}
Use the 4^{th} digit 0 from dividend 101010
\begin{array}{l}\phantom{1110)}0000\phantom{8}\\1110\overline{)101010}\\\end{array}
Since 1010 is less than 1110, use the next digit 1 from dividend 101010 and add 0 to the quotient
\begin{array}{l}\phantom{1110)}0000\phantom{9}\\1110\overline{)101010}\\\end{array}
Use the 5^{th} digit 1 from dividend 101010
\begin{array}{l}\phantom{1110)}00009\phantom{10}\\1110\overline{)101010}\\\phantom{1110)}\underline{\phantom{9}9990\phantom{9}}\\\phantom{1110)99}111\\\end{array}
Find closest multiple of 1110 to 10101. We see that 9 \times 1110 = 9990 is the nearest. Now subtract 9990 from 10101 to get reminder 111. Add 9 to quotient.
\begin{array}{l}\phantom{1110)}00009\phantom{11}\\1110\overline{)101010}\\\phantom{1110)}\underline{\phantom{9}9990\phantom{9}}\\\phantom{1110)99}1110\\\end{array}
Use the 6^{th} digit 0 from dividend 101010
\begin{array}{l}\phantom{1110)}000091\phantom{12}\\1110\overline{)101010}\\\phantom{1110)}\underline{\phantom{9}9990\phantom{9}}\\\phantom{1110)99}1110\\\phantom{1110)}\underline{\phantom{99}1110\phantom{}}\\\phantom{1110)999999}0\\\end{array}
Find closest multiple of 1110 to 1110. We see that 1 \times 1110 = 1110 is the nearest. Now subtract 1110 from 1110 to get reminder 0. Add 1 to quotient.
\text{Quotient: }91 \text{Reminder: }0
Since 0 is less than 1110, stop the division. The reminder is 0. The topmost line 000091 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}