Solve for x (complex solution)
x=\frac{901+\sqrt{3188203}i}{202}\approx 4.46039604+8.839376117i
x=\frac{-\sqrt{3188203}i+901}{202}\approx 4.46039604-8.839376117i
Graph
Share
Copied to clipboard
101x^{2}-901x+9901=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-901\right)±\sqrt{\left(-901\right)^{2}-4\times 101\times 9901}}{2\times 101}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 101 for a, -901 for b, and 9901 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-901\right)±\sqrt{811801-4\times 101\times 9901}}{2\times 101}
Square -901.
x=\frac{-\left(-901\right)±\sqrt{811801-404\times 9901}}{2\times 101}
Multiply -4 times 101.
x=\frac{-\left(-901\right)±\sqrt{811801-4000004}}{2\times 101}
Multiply -404 times 9901.
x=\frac{-\left(-901\right)±\sqrt{-3188203}}{2\times 101}
Add 811801 to -4000004.
x=\frac{-\left(-901\right)±\sqrt{3188203}i}{2\times 101}
Take the square root of -3188203.
x=\frac{901±\sqrt{3188203}i}{2\times 101}
The opposite of -901 is 901.
x=\frac{901±\sqrt{3188203}i}{202}
Multiply 2 times 101.
x=\frac{901+\sqrt{3188203}i}{202}
Now solve the equation x=\frac{901±\sqrt{3188203}i}{202} when ± is plus. Add 901 to i\sqrt{3188203}.
x=\frac{-\sqrt{3188203}i+901}{202}
Now solve the equation x=\frac{901±\sqrt{3188203}i}{202} when ± is minus. Subtract i\sqrt{3188203} from 901.
x=\frac{901+\sqrt{3188203}i}{202} x=\frac{-\sqrt{3188203}i+901}{202}
The equation is now solved.
101x^{2}-901x+9901=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
101x^{2}-901x+9901-9901=-9901
Subtract 9901 from both sides of the equation.
101x^{2}-901x=-9901
Subtracting 9901 from itself leaves 0.
\frac{101x^{2}-901x}{101}=-\frac{9901}{101}
Divide both sides by 101.
x^{2}-\frac{901}{101}x=-\frac{9901}{101}
Dividing by 101 undoes the multiplication by 101.
x^{2}-\frac{901}{101}x+\left(-\frac{901}{202}\right)^{2}=-\frac{9901}{101}+\left(-\frac{901}{202}\right)^{2}
Divide -\frac{901}{101}, the coefficient of the x term, by 2 to get -\frac{901}{202}. Then add the square of -\frac{901}{202} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{901}{101}x+\frac{811801}{40804}=-\frac{9901}{101}+\frac{811801}{40804}
Square -\frac{901}{202} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{901}{101}x+\frac{811801}{40804}=-\frac{3188203}{40804}
Add -\frac{9901}{101} to \frac{811801}{40804} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{901}{202}\right)^{2}=-\frac{3188203}{40804}
Factor x^{2}-\frac{901}{101}x+\frac{811801}{40804}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{901}{202}\right)^{2}}=\sqrt{-\frac{3188203}{40804}}
Take the square root of both sides of the equation.
x-\frac{901}{202}=\frac{\sqrt{3188203}i}{202} x-\frac{901}{202}=-\frac{\sqrt{3188203}i}{202}
Simplify.
x=\frac{901+\sqrt{3188203}i}{202} x=\frac{-\sqrt{3188203}i+901}{202}
Add \frac{901}{202} to both sides of the equation.
x ^ 2 -\frac{901}{101}x +\frac{9901}{101} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 101
r + s = \frac{901}{101} rs = \frac{9901}{101}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{901}{202} - u s = \frac{901}{202} + u
Two numbers r and s sum up to \frac{901}{101} exactly when the average of the two numbers is \frac{1}{2}*\frac{901}{101} = \frac{901}{202}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{901}{202} - u) (\frac{901}{202} + u) = \frac{9901}{101}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9901}{101}
-\frac{811801}{40804} - u^2 = \frac{9901}{101}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9901}{101}--\frac{811801}{40804} = \frac{3188203}{40804}
Simplify the expression by subtracting -\frac{811801}{40804} on both sides
u^2 = -\frac{3188203}{40804} u = \pm\sqrt{-\frac{3188203}{40804}} = \pm \frac{\sqrt{3188203}}{202}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{901}{202} - \frac{\sqrt{3188203}}{202}i = 4.460 - 8.839i s = \frac{901}{202} + \frac{\sqrt{3188203}}{202}i = 4.460 + 8.839i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}