Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

101x^{2}+104x+3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-104±\sqrt{104^{2}-4\times 101\times 3}}{2\times 101}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 101 for a, 104 for b, and 3 for c in the quadratic formula.
x=\frac{-104±98}{202}
Do the calculations.
x=-\frac{3}{101} x=-1
Solve the equation x=\frac{-104±98}{202} when ± is plus and when ± is minus.
101\left(x+\frac{3}{101}\right)\left(x+1\right)<0
Rewrite the inequality by using the obtained solutions.
x+\frac{3}{101}>0 x+1<0
For the product to be negative, x+\frac{3}{101} and x+1 have to be of the opposite signs. Consider the case when x+\frac{3}{101} is positive and x+1 is negative.
x\in \emptyset
This is false for any x.
x+1>0 x+\frac{3}{101}<0
Consider the case when x+1 is positive and x+\frac{3}{101} is negative.
x\in \left(-1,-\frac{3}{101}\right)
The solution satisfying both inequalities is x\in \left(-1,-\frac{3}{101}\right).
x\in \left(-1,-\frac{3}{101}\right)
The final solution is the union of the obtained solutions.