Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

101y^{2}-10y=-24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
101y^{2}-10y-\left(-24\right)=-24-\left(-24\right)
Add 24 to both sides of the equation.
101y^{2}-10y-\left(-24\right)=0
Subtracting -24 from itself leaves 0.
101y^{2}-10y+24=0
Subtract -24 from 0.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 101\times 24}}{2\times 101}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 101 for a, -10 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 101\times 24}}{2\times 101}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-404\times 24}}{2\times 101}
Multiply -4 times 101.
y=\frac{-\left(-10\right)±\sqrt{100-9696}}{2\times 101}
Multiply -404 times 24.
y=\frac{-\left(-10\right)±\sqrt{-9596}}{2\times 101}
Add 100 to -9696.
y=\frac{-\left(-10\right)±2\sqrt{2399}i}{2\times 101}
Take the square root of -9596.
y=\frac{10±2\sqrt{2399}i}{2\times 101}
The opposite of -10 is 10.
y=\frac{10±2\sqrt{2399}i}{202}
Multiply 2 times 101.
y=\frac{10+2\sqrt{2399}i}{202}
Now solve the equation y=\frac{10±2\sqrt{2399}i}{202} when ± is plus. Add 10 to 2i\sqrt{2399}.
y=\frac{5+\sqrt{2399}i}{101}
Divide 10+2i\sqrt{2399} by 202.
y=\frac{-2\sqrt{2399}i+10}{202}
Now solve the equation y=\frac{10±2\sqrt{2399}i}{202} when ± is minus. Subtract 2i\sqrt{2399} from 10.
y=\frac{-\sqrt{2399}i+5}{101}
Divide 10-2i\sqrt{2399} by 202.
y=\frac{5+\sqrt{2399}i}{101} y=\frac{-\sqrt{2399}i+5}{101}
The equation is now solved.
101y^{2}-10y=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{101y^{2}-10y}{101}=-\frac{24}{101}
Divide both sides by 101.
y^{2}-\frac{10}{101}y=-\frac{24}{101}
Dividing by 101 undoes the multiplication by 101.
y^{2}-\frac{10}{101}y+\left(-\frac{5}{101}\right)^{2}=-\frac{24}{101}+\left(-\frac{5}{101}\right)^{2}
Divide -\frac{10}{101}, the coefficient of the x term, by 2 to get -\frac{5}{101}. Then add the square of -\frac{5}{101} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{10}{101}y+\frac{25}{10201}=-\frac{24}{101}+\frac{25}{10201}
Square -\frac{5}{101} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{10}{101}y+\frac{25}{10201}=-\frac{2399}{10201}
Add -\frac{24}{101} to \frac{25}{10201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{101}\right)^{2}=-\frac{2399}{10201}
Factor y^{2}-\frac{10}{101}y+\frac{25}{10201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{101}\right)^{2}}=\sqrt{-\frac{2399}{10201}}
Take the square root of both sides of the equation.
y-\frac{5}{101}=\frac{\sqrt{2399}i}{101} y-\frac{5}{101}=-\frac{\sqrt{2399}i}{101}
Simplify.
y=\frac{5+\sqrt{2399}i}{101} y=\frac{-\sqrt{2399}i+5}{101}
Add \frac{5}{101} to both sides of the equation.