Solve for y
y=\frac{2\sqrt{19}+50}{101}\approx 0.581364336
y=\frac{50-2\sqrt{19}}{101}\approx 0.408734674
Graph
Share
Copied to clipboard
101y^{2}-100y=-24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
101y^{2}-100y-\left(-24\right)=-24-\left(-24\right)
Add 24 to both sides of the equation.
101y^{2}-100y-\left(-24\right)=0
Subtracting -24 from itself leaves 0.
101y^{2}-100y+24=0
Subtract -24 from 0.
y=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 101\times 24}}{2\times 101}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 101 for a, -100 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-100\right)±\sqrt{10000-4\times 101\times 24}}{2\times 101}
Square -100.
y=\frac{-\left(-100\right)±\sqrt{10000-404\times 24}}{2\times 101}
Multiply -4 times 101.
y=\frac{-\left(-100\right)±\sqrt{10000-9696}}{2\times 101}
Multiply -404 times 24.
y=\frac{-\left(-100\right)±\sqrt{304}}{2\times 101}
Add 10000 to -9696.
y=\frac{-\left(-100\right)±4\sqrt{19}}{2\times 101}
Take the square root of 304.
y=\frac{100±4\sqrt{19}}{2\times 101}
The opposite of -100 is 100.
y=\frac{100±4\sqrt{19}}{202}
Multiply 2 times 101.
y=\frac{4\sqrt{19}+100}{202}
Now solve the equation y=\frac{100±4\sqrt{19}}{202} when ± is plus. Add 100 to 4\sqrt{19}.
y=\frac{2\sqrt{19}+50}{101}
Divide 100+4\sqrt{19} by 202.
y=\frac{100-4\sqrt{19}}{202}
Now solve the equation y=\frac{100±4\sqrt{19}}{202} when ± is minus. Subtract 4\sqrt{19} from 100.
y=\frac{50-2\sqrt{19}}{101}
Divide 100-4\sqrt{19} by 202.
y=\frac{2\sqrt{19}+50}{101} y=\frac{50-2\sqrt{19}}{101}
The equation is now solved.
101y^{2}-100y=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{101y^{2}-100y}{101}=-\frac{24}{101}
Divide both sides by 101.
y^{2}-\frac{100}{101}y=-\frac{24}{101}
Dividing by 101 undoes the multiplication by 101.
y^{2}-\frac{100}{101}y+\left(-\frac{50}{101}\right)^{2}=-\frac{24}{101}+\left(-\frac{50}{101}\right)^{2}
Divide -\frac{100}{101}, the coefficient of the x term, by 2 to get -\frac{50}{101}. Then add the square of -\frac{50}{101} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{100}{101}y+\frac{2500}{10201}=-\frac{24}{101}+\frac{2500}{10201}
Square -\frac{50}{101} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{100}{101}y+\frac{2500}{10201}=\frac{76}{10201}
Add -\frac{24}{101} to \frac{2500}{10201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{50}{101}\right)^{2}=\frac{76}{10201}
Factor y^{2}-\frac{100}{101}y+\frac{2500}{10201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{50}{101}\right)^{2}}=\sqrt{\frac{76}{10201}}
Take the square root of both sides of the equation.
y-\frac{50}{101}=\frac{2\sqrt{19}}{101} y-\frac{50}{101}=-\frac{2\sqrt{19}}{101}
Simplify.
y=\frac{2\sqrt{19}+50}{101} y=\frac{50-2\sqrt{19}}{101}
Add \frac{50}{101} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}