Evaluate
\frac{101}{99}\approx 1.02020202
Factor
\frac{101}{3 ^ {2} \cdot 11} = 1\frac{2}{99} = 1.02020202020202
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)101}\\\end{array}
Use the 1^{st} digit 1 from dividend 101
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)101}\\\end{array}
Since 1 is less than 99, use the next digit 0 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)101}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)101}\\\end{array}
Since 10 is less than 99, use the next digit 1 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)101}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101
\begin{array}{l}\phantom{99)}001\phantom{6}\\99\overline{)101}\\\phantom{99)}\underline{\phantom{9}99\phantom{}}\\\phantom{99)99}2\\\end{array}
Find closest multiple of 99 to 101. We see that 1 \times 99 = 99 is the nearest. Now subtract 99 from 101 to get reminder 2. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2
Since 2 is less than 99, stop the division. The reminder is 2. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}