Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\left(10x-x^{2}\right)
Factor out 10.
x\left(10-x\right)
Consider 10x-x^{2}. Factor out x.
10x\left(-x+10\right)
Rewrite the complete factored expression.
-10x^{2}+100x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±100}{2\left(-10\right)}
Take the square root of 100^{2}.
x=\frac{-100±100}{-20}
Multiply 2 times -10.
x=\frac{0}{-20}
Now solve the equation x=\frac{-100±100}{-20} when ± is plus. Add -100 to 100.
x=0
Divide 0 by -20.
x=-\frac{200}{-20}
Now solve the equation x=\frac{-100±100}{-20} when ± is minus. Subtract 100 from -100.
x=10
Divide -200 by -20.
-10x^{2}+100x=-10x\left(x-10\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 10 for x_{2}.