Evaluate
\frac{501}{98}\approx 5.112244898
Factor
\frac{3 \cdot 167}{2 \cdot 7 ^ {2}} = 5\frac{11}{98} = 5.112244897959184
Share
Copied to clipboard
\begin{array}{l}\phantom{196)}\phantom{1}\\196\overline{)1002}\\\end{array}
Use the 1^{st} digit 1 from dividend 1002
\begin{array}{l}\phantom{196)}0\phantom{2}\\196\overline{)1002}\\\end{array}
Since 1 is less than 196, use the next digit 0 from dividend 1002 and add 0 to the quotient
\begin{array}{l}\phantom{196)}0\phantom{3}\\196\overline{)1002}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1002
\begin{array}{l}\phantom{196)}00\phantom{4}\\196\overline{)1002}\\\end{array}
Since 10 is less than 196, use the next digit 0 from dividend 1002 and add 0 to the quotient
\begin{array}{l}\phantom{196)}00\phantom{5}\\196\overline{)1002}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1002
\begin{array}{l}\phantom{196)}000\phantom{6}\\196\overline{)1002}\\\end{array}
Since 100 is less than 196, use the next digit 2 from dividend 1002 and add 0 to the quotient
\begin{array}{l}\phantom{196)}000\phantom{7}\\196\overline{)1002}\\\end{array}
Use the 4^{th} digit 2 from dividend 1002
\begin{array}{l}\phantom{196)}0005\phantom{8}\\196\overline{)1002}\\\phantom{196)}\underline{\phantom{9}980\phantom{}}\\\phantom{196)99}22\\\end{array}
Find closest multiple of 196 to 1002. We see that 5 \times 196 = 980 is the nearest. Now subtract 980 from 1002 to get reminder 22. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }22
Since 22 is less than 196, stop the division. The reminder is 22. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}