Solve for x
x=-\frac{y}{5}-\frac{3z}{100}+\frac{99}{50}
Solve for y
y=-\frac{3z}{20}-5x+\frac{99}{10}
Share
Copied to clipboard
1000x+30z+21=2001-200y
Subtract 200y from both sides.
1000x+21=2001-200y-30z
Subtract 30z from both sides.
1000x=2001-200y-30z-21
Subtract 21 from both sides.
1000x=1980-200y-30z
Subtract 21 from 2001 to get 1980.
1000x=1980-30z-200y
The equation is in standard form.
\frac{1000x}{1000}=\frac{1980-30z-200y}{1000}
Divide both sides by 1000.
x=\frac{1980-30z-200y}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x=-\frac{y}{5}-\frac{3z}{100}+\frac{99}{50}
Divide 1980-200y-30z by 1000.
200y+30z+21=2001-1000x
Subtract 1000x from both sides.
200y+21=2001-1000x-30z
Subtract 30z from both sides.
200y=2001-1000x-30z-21
Subtract 21 from both sides.
200y=1980-1000x-30z
Subtract 21 from 2001 to get 1980.
200y=1980-30z-1000x
The equation is in standard form.
\frac{200y}{200}=\frac{1980-30z-1000x}{200}
Divide both sides by 200.
y=\frac{1980-30z-1000x}{200}
Dividing by 200 undoes the multiplication by 200.
y=-\frac{3z}{20}-5x+\frac{99}{10}
Divide 1980-1000x-30z by 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}