Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\phantom{\times}0\phantom{999999}\\\end{array}
Now multiply the first number with the 7^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 6 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\phantom{\times}0\phantom{999999}\\\phantom{\times}0\phantom{9999999}\\\end{array}
Now multiply the first number with the 8^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 7 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\phantom{\times}0\phantom{999999}\\\phantom{\times}0\phantom{9999999}\\\phantom{\times}0\phantom{99999999}\\\end{array}
Now multiply the first number with the 9^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 0. Write the result 0 at the end leaving 8 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\phantom{\times}0\phantom{999999}\\\phantom{\times}0\phantom{9999999}\\\phantom{\times}0\phantom{99999999}\\\underline{\phantom{\times}1000000000\phantom{999999999}}\\\end{array}
Now multiply the first number with the 10^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1000000000 with 1. Write the result 1000000000 at the end leaving 9 spaces to the right like this.
\begin{array}{c}\phantom{\times}1000000000\\\underline{\times\phantom{}1000000000}\\\phantom{\times}0\\\phantom{\times}0\phantom{9}\\\phantom{\times}0\phantom{99}\\\phantom{\times}0\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}0\phantom{99999}\\\phantom{\times}0\phantom{999999}\\\phantom{\times}0\phantom{9999999}\\\phantom{\times}0\phantom{99999999}\\\underline{\phantom{\times}1000000000\phantom{999999999}}\\\phantom{\times}-1486618624\end{array}
Now add the intermediate results to get final answer.