Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{36525)}\phantom{1}\\36525\overline{)1000000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000000000
\begin{array}{l}\phantom{36525)}0\phantom{2}\\36525\overline{)1000000000}\\\end{array}
Since 1 is less than 36525, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{36525)}0\phantom{3}\\36525\overline{)1000000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}00\phantom{4}\\36525\overline{)1000000000}\\\end{array}
Since 10 is less than 36525, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{36525)}00\phantom{5}\\36525\overline{)1000000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}000\phantom{6}\\36525\overline{)1000000000}\\\end{array}
Since 100 is less than 36525, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{36525)}000\phantom{7}\\36525\overline{)1000000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}0000\phantom{8}\\36525\overline{)1000000000}\\\end{array}
Since 1000 is less than 36525, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{36525)}0000\phantom{9}\\36525\overline{)1000000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}00000\phantom{10}\\36525\overline{)1000000000}\\\end{array}
Since 10000 is less than 36525, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{36525)}00000\phantom{11}\\36525\overline{)1000000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}000002\phantom{12}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}26950\\\end{array}
Find closest multiple of 36525 to 100000. We see that 2 \times 36525 = 73050 is the nearest. Now subtract 73050 from 100000 to get reminder 26950. Add 2 to quotient.
\begin{array}{l}\phantom{36525)}000002\phantom{13}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\end{array}
Use the 7^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}0000027\phantom{14}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}13825\\\end{array}
Find closest multiple of 36525 to 269500. We see that 7 \times 36525 = 255675 is the nearest. Now subtract 255675 from 269500 to get reminder 13825. Add 7 to quotient.
\begin{array}{l}\phantom{36525)}0000027\phantom{15}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\end{array}
Use the 8^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}00000273\phantom{16}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\phantom{36525)}\underline{\phantom{99}109575\phantom{99}}\\\phantom{36525)999}28675\\\end{array}
Find closest multiple of 36525 to 138250. We see that 3 \times 36525 = 109575 is the nearest. Now subtract 109575 from 138250 to get reminder 28675. Add 3 to quotient.
\begin{array}{l}\phantom{36525)}00000273\phantom{17}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\phantom{36525)}\underline{\phantom{99}109575\phantom{99}}\\\phantom{36525)999}286750\\\end{array}
Use the 9^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}000002737\phantom{18}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\phantom{36525)}\underline{\phantom{99}109575\phantom{99}}\\\phantom{36525)999}286750\\\phantom{36525)}\underline{\phantom{999}255675\phantom{9}}\\\phantom{36525)9999}31075\\\end{array}
Find closest multiple of 36525 to 286750. We see that 7 \times 36525 = 255675 is the nearest. Now subtract 255675 from 286750 to get reminder 31075. Add 7 to quotient.
\begin{array}{l}\phantom{36525)}000002737\phantom{19}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\phantom{36525)}\underline{\phantom{99}109575\phantom{99}}\\\phantom{36525)999}286750\\\phantom{36525)}\underline{\phantom{999}255675\phantom{9}}\\\phantom{36525)9999}310750\\\end{array}
Use the 10^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{36525)}0000027378\phantom{20}\\36525\overline{)1000000000}\\\phantom{36525)}\underline{\phantom{9}73050\phantom{9999}}\\\phantom{36525)9}269500\\\phantom{36525)}\underline{\phantom{9}255675\phantom{999}}\\\phantom{36525)99}138250\\\phantom{36525)}\underline{\phantom{99}109575\phantom{99}}\\\phantom{36525)999}286750\\\phantom{36525)}\underline{\phantom{999}255675\phantom{9}}\\\phantom{36525)9999}310750\\\phantom{36525)}\underline{\phantom{9999}292200\phantom{}}\\\phantom{36525)99999}18550\\\end{array}
Find closest multiple of 36525 to 310750. We see that 8 \times 36525 = 292200 is the nearest. Now subtract 292200 from 310750 to get reminder 18550. Add 8 to quotient.
\text{Quotient: }27378 \text{Reminder: }18550
Since 18550 is less than 36525, stop the division. The reminder is 18550. The topmost line 0000027378 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27378.