Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)1000000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000000000
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)1000000000}\\\end{array}
Since 1 is less than 28, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)1000000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}00\phantom{4}\\28\overline{)1000000000}\\\end{array}
Since 10 is less than 28, use the next digit 0 from dividend 1000000000 and add 0 to the quotient
\begin{array}{l}\phantom{28)}00\phantom{5}\\28\overline{)1000000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}003\phantom{6}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}16\\\end{array}
Find closest multiple of 28 to 100. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 100 to get reminder 16. Add 3 to quotient.
\begin{array}{l}\phantom{28)}003\phantom{7}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\end{array}
Use the 4^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}0035\phantom{8}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}20\\\end{array}
Find closest multiple of 28 to 160. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 160 to get reminder 20. Add 5 to quotient.
\begin{array}{l}\phantom{28)}0035\phantom{9}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\end{array}
Use the 5^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}00357\phantom{10}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}4\\\end{array}
Find closest multiple of 28 to 200. We see that 7 \times 28 = 196 is the nearest. Now subtract 196 from 200 to get reminder 4. Add 7 to quotient.
\begin{array}{l}\phantom{28)}00357\phantom{11}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\end{array}
Use the 6^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}003571\phantom{12}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}12\\\end{array}
Find closest multiple of 28 to 40. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 40 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{28)}003571\phantom{13}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\end{array}
Use the 7^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}0035714\phantom{14}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}8\\\end{array}
Find closest multiple of 28 to 120. We see that 4 \times 28 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 4 to quotient.
\begin{array}{l}\phantom{28)}0035714\phantom{15}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\end{array}
Use the 8^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}00357142\phantom{16}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\phantom{28)}\underline{\phantom{999999}56\phantom{99}}\\\phantom{28)999999}24\\\end{array}
Find closest multiple of 28 to 80. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 80 to get reminder 24. Add 2 to quotient.
\begin{array}{l}\phantom{28)}00357142\phantom{17}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\phantom{28)}\underline{\phantom{999999}56\phantom{99}}\\\phantom{28)999999}240\\\end{array}
Use the 9^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}003571428\phantom{18}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\phantom{28)}\underline{\phantom{999999}56\phantom{99}}\\\phantom{28)999999}240\\\phantom{28)}\underline{\phantom{999999}224\phantom{9}}\\\phantom{28)9999999}16\\\end{array}
Find closest multiple of 28 to 240. We see that 8 \times 28 = 224 is the nearest. Now subtract 224 from 240 to get reminder 16. Add 8 to quotient.
\begin{array}{l}\phantom{28)}003571428\phantom{19}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\phantom{28)}\underline{\phantom{999999}56\phantom{99}}\\\phantom{28)999999}240\\\phantom{28)}\underline{\phantom{999999}224\phantom{9}}\\\phantom{28)9999999}160\\\end{array}
Use the 10^{th} digit 0 from dividend 1000000000
\begin{array}{l}\phantom{28)}0035714285\phantom{20}\\28\overline{)1000000000}\\\phantom{28)}\underline{\phantom{9}84\phantom{9999999}}\\\phantom{28)9}160\\\phantom{28)}\underline{\phantom{9}140\phantom{999999}}\\\phantom{28)99}200\\\phantom{28)}\underline{\phantom{99}196\phantom{99999}}\\\phantom{28)9999}40\\\phantom{28)}\underline{\phantom{9999}28\phantom{9999}}\\\phantom{28)9999}120\\\phantom{28)}\underline{\phantom{9999}112\phantom{999}}\\\phantom{28)999999}80\\\phantom{28)}\underline{\phantom{999999}56\phantom{99}}\\\phantom{28)999999}240\\\phantom{28)}\underline{\phantom{999999}224\phantom{9}}\\\phantom{28)9999999}160\\\phantom{28)}\underline{\phantom{9999999}140\phantom{}}\\\phantom{28)99999999}20\\\end{array}
Find closest multiple of 28 to 160. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 160 to get reminder 20. Add 5 to quotient.
\text{Quotient: }35714285 \text{Reminder: }20
Since 20 is less than 28, stop the division. The reminder is 20. The topmost line 0035714285 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35714285.