Evaluate
\frac{25}{2}=12.5
Factor
\frac{5 ^ {2}}{2} = 12\frac{1}{2} = 12.5
Share
Copied to clipboard
\begin{array}{l}\phantom{80000)}\phantom{1}\\80000\overline{)1000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000000
\begin{array}{l}\phantom{80000)}0\phantom{2}\\80000\overline{)1000000}\\\end{array}
Since 1 is less than 80000, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{80000)}0\phantom{3}\\80000\overline{)1000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}00\phantom{4}\\80000\overline{)1000000}\\\end{array}
Since 10 is less than 80000, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{80000)}00\phantom{5}\\80000\overline{)1000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}000\phantom{6}\\80000\overline{)1000000}\\\end{array}
Since 100 is less than 80000, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{80000)}000\phantom{7}\\80000\overline{)1000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}0000\phantom{8}\\80000\overline{)1000000}\\\end{array}
Since 1000 is less than 80000, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{80000)}0000\phantom{9}\\80000\overline{)1000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}00000\phantom{10}\\80000\overline{)1000000}\\\end{array}
Since 10000 is less than 80000, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{80000)}00000\phantom{11}\\80000\overline{)1000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}000001\phantom{12}\\80000\overline{)1000000}\\\phantom{80000)}\underline{\phantom{9}80000\phantom{9}}\\\phantom{80000)9}20000\\\end{array}
Find closest multiple of 80000 to 100000. We see that 1 \times 80000 = 80000 is the nearest. Now subtract 80000 from 100000 to get reminder 20000. Add 1 to quotient.
\begin{array}{l}\phantom{80000)}000001\phantom{13}\\80000\overline{)1000000}\\\phantom{80000)}\underline{\phantom{9}80000\phantom{9}}\\\phantom{80000)9}200000\\\end{array}
Use the 7^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{80000)}0000012\phantom{14}\\80000\overline{)1000000}\\\phantom{80000)}\underline{\phantom{9}80000\phantom{9}}\\\phantom{80000)9}200000\\\phantom{80000)}\underline{\phantom{9}160000\phantom{}}\\\phantom{80000)99}40000\\\end{array}
Find closest multiple of 80000 to 200000. We see that 2 \times 80000 = 160000 is the nearest. Now subtract 160000 from 200000 to get reminder 40000. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }40000
Since 40000 is less than 80000, stop the division. The reminder is 40000. The topmost line 0000012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}