Evaluate
\frac{6250}{9}\approx 694.444444444
Factor
\frac{2 \cdot 5 ^ {5}}{3 ^ {2}} = 694\frac{4}{9} = 694.4444444444445
Share
Copied to clipboard
\begin{array}{l}\phantom{1440)}\phantom{1}\\1440\overline{)1000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000000
\begin{array}{l}\phantom{1440)}0\phantom{2}\\1440\overline{)1000000}\\\end{array}
Since 1 is less than 1440, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}0\phantom{3}\\1440\overline{)1000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}00\phantom{4}\\1440\overline{)1000000}\\\end{array}
Since 10 is less than 1440, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}00\phantom{5}\\1440\overline{)1000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}000\phantom{6}\\1440\overline{)1000000}\\\end{array}
Since 100 is less than 1440, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}000\phantom{7}\\1440\overline{)1000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}0000\phantom{8}\\1440\overline{)1000000}\\\end{array}
Since 1000 is less than 1440, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}0000\phantom{9}\\1440\overline{)1000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}00006\phantom{10}\\1440\overline{)1000000}\\\phantom{1440)}\underline{\phantom{9}8640\phantom{99}}\\\phantom{1440)9}1360\\\end{array}
Find closest multiple of 1440 to 10000. We see that 6 \times 1440 = 8640 is the nearest. Now subtract 8640 from 10000 to get reminder 1360. Add 6 to quotient.
\begin{array}{l}\phantom{1440)}00006\phantom{11}\\1440\overline{)1000000}\\\phantom{1440)}\underline{\phantom{9}8640\phantom{99}}\\\phantom{1440)9}13600\\\end{array}
Use the 6^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}000069\phantom{12}\\1440\overline{)1000000}\\\phantom{1440)}\underline{\phantom{9}8640\phantom{99}}\\\phantom{1440)9}13600\\\phantom{1440)}\underline{\phantom{9}12960\phantom{9}}\\\phantom{1440)999}640\\\end{array}
Find closest multiple of 1440 to 13600. We see that 9 \times 1440 = 12960 is the nearest. Now subtract 12960 from 13600 to get reminder 640. Add 9 to quotient.
\begin{array}{l}\phantom{1440)}000069\phantom{13}\\1440\overline{)1000000}\\\phantom{1440)}\underline{\phantom{9}8640\phantom{99}}\\\phantom{1440)9}13600\\\phantom{1440)}\underline{\phantom{9}12960\phantom{9}}\\\phantom{1440)999}6400\\\end{array}
Use the 7^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{1440)}0000694\phantom{14}\\1440\overline{)1000000}\\\phantom{1440)}\underline{\phantom{9}8640\phantom{99}}\\\phantom{1440)9}13600\\\phantom{1440)}\underline{\phantom{9}12960\phantom{9}}\\\phantom{1440)999}6400\\\phantom{1440)}\underline{\phantom{999}5760\phantom{}}\\\phantom{1440)9999}640\\\end{array}
Find closest multiple of 1440 to 6400. We see that 4 \times 1440 = 5760 is the nearest. Now subtract 5760 from 6400 to get reminder 640. Add 4 to quotient.
\text{Quotient: }694 \text{Reminder: }640
Since 640 is less than 1440, stop the division. The reminder is 640. The topmost line 0000694 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 694.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}