Evaluate
\frac{12500}{3}\approx 4166.666666667
Factor
\frac{2 ^ {2} \cdot 5 ^ {5}}{3} = 4166\frac{2}{3} = 4166.666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)100000}\\\end{array}
Use the 1^{st} digit 1 from dividend 100000
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)100000}\\\end{array}
Since 1 is less than 24, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)100000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100000
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)100000}\\\end{array}
Since 10 is less than 24, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)100000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100000
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}4\\\end{array}
Find closest multiple of 24 to 100. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 100 to get reminder 4. Add 4 to quotient.
\begin{array}{l}\phantom{24)}004\phantom{7}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\end{array}
Use the 4^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{24)}0041\phantom{8}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\phantom{24)}\underline{\phantom{99}24\phantom{99}}\\\phantom{24)99}16\\\end{array}
Find closest multiple of 24 to 40. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 40 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{24)}0041\phantom{9}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\phantom{24)}\underline{\phantom{99}24\phantom{99}}\\\phantom{24)99}160\\\end{array}
Use the 5^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{24)}00416\phantom{10}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\phantom{24)}\underline{\phantom{99}24\phantom{99}}\\\phantom{24)99}160\\\phantom{24)}\underline{\phantom{99}144\phantom{9}}\\\phantom{24)999}16\\\end{array}
Find closest multiple of 24 to 160. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 160 to get reminder 16. Add 6 to quotient.
\begin{array}{l}\phantom{24)}00416\phantom{11}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\phantom{24)}\underline{\phantom{99}24\phantom{99}}\\\phantom{24)99}160\\\phantom{24)}\underline{\phantom{99}144\phantom{9}}\\\phantom{24)999}160\\\end{array}
Use the 6^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{24)}004166\phantom{12}\\24\overline{)100000}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)99}40\\\phantom{24)}\underline{\phantom{99}24\phantom{99}}\\\phantom{24)99}160\\\phantom{24)}\underline{\phantom{99}144\phantom{9}}\\\phantom{24)999}160\\\phantom{24)}\underline{\phantom{999}144\phantom{}}\\\phantom{24)9999}16\\\end{array}
Find closest multiple of 24 to 160. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 160 to get reminder 16. Add 6 to quotient.
\text{Quotient: }4166 \text{Reminder: }16
Since 16 is less than 24, stop the division. The reminder is 16. The topmost line 004166 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4166.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}