Evaluate
\frac{20000}{7}\approx 2857.142857143
Factor
\frac{2 ^ {5} \cdot 5 ^ {4}}{7} = 2857\frac{1}{7} = 2857.1428571428573
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)100000}\\\end{array}
Use the 1^{st} digit 1 from dividend 100000
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)100000}\\\end{array}
Since 1 is less than 35, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)100000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100000
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)100000}\\\end{array}
Since 10 is less than 35, use the next digit 0 from dividend 100000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)100000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100000
\begin{array}{l}\phantom{35)}002\phantom{6}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}30\\\end{array}
Find closest multiple of 35 to 100. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 100 to get reminder 30. Add 2 to quotient.
\begin{array}{l}\phantom{35)}002\phantom{7}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\end{array}
Use the 4^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{35)}0028\phantom{8}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}20\\\end{array}
Find closest multiple of 35 to 300. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 300 to get reminder 20. Add 8 to quotient.
\begin{array}{l}\phantom{35)}0028\phantom{9}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}200\\\end{array}
Use the 5^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{35)}00285\phantom{10}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}200\\\phantom{35)}\underline{\phantom{99}175\phantom{9}}\\\phantom{35)999}25\\\end{array}
Find closest multiple of 35 to 200. We see that 5 \times 35 = 175 is the nearest. Now subtract 175 from 200 to get reminder 25. Add 5 to quotient.
\begin{array}{l}\phantom{35)}00285\phantom{11}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}200\\\phantom{35)}\underline{\phantom{99}175\phantom{9}}\\\phantom{35)999}250\\\end{array}
Use the 6^{th} digit 0 from dividend 100000
\begin{array}{l}\phantom{35)}002857\phantom{12}\\35\overline{)100000}\\\phantom{35)}\underline{\phantom{9}70\phantom{999}}\\\phantom{35)9}300\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}200\\\phantom{35)}\underline{\phantom{99}175\phantom{9}}\\\phantom{35)999}250\\\phantom{35)}\underline{\phantom{999}245\phantom{}}\\\phantom{35)99999}5\\\end{array}
Find closest multiple of 35 to 250. We see that 7 \times 35 = 245 is the nearest. Now subtract 245 from 250 to get reminder 5. Add 7 to quotient.
\text{Quotient: }2857 \text{Reminder: }5
Since 5 is less than 35, stop the division. The reminder is 5. The topmost line 002857 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2857.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}