100000 / ( 1 + 4.02 \% ) =
Evaluate
\frac{500000000}{5201}\approx 96135.358584888
Factor
\frac{2 ^ {8} \cdot 5 ^ {9}}{7 \cdot 743} = 96135\frac{1865}{5201} = 96135.35858488752
Share
Copied to clipboard
\frac{100000}{1+\frac{402}{10000}}
Expand \frac{4.02}{100} by multiplying both numerator and the denominator by 100.
\frac{100000}{1+\frac{201}{5000}}
Reduce the fraction \frac{402}{10000} to lowest terms by extracting and canceling out 2.
\frac{100000}{\frac{5000}{5000}+\frac{201}{5000}}
Convert 1 to fraction \frac{5000}{5000}.
\frac{100000}{\frac{5000+201}{5000}}
Since \frac{5000}{5000} and \frac{201}{5000} have the same denominator, add them by adding their numerators.
\frac{100000}{\frac{5201}{5000}}
Add 5000 and 201 to get 5201.
100000\times \frac{5000}{5201}
Divide 100000 by \frac{5201}{5000} by multiplying 100000 by the reciprocal of \frac{5201}{5000}.
\frac{100000\times 5000}{5201}
Express 100000\times \frac{5000}{5201} as a single fraction.
\frac{500000000}{5201}
Multiply 100000 and 5000 to get 500000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}