Factor
8\left(25-n\right)\left(n+50\right)
Evaluate
8\left(25-n\right)\left(n+50\right)
Share
Copied to clipboard
8\left(1250-25n-n^{2}\right)
Factor out 8.
-n^{2}-25n+1250
Consider 1250-25n-n^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-25 ab=-1250=-1250
Factor the expression by grouping. First, the expression needs to be rewritten as -n^{2}+an+bn+1250. To find a and b, set up a system to be solved.
1,-1250 2,-625 5,-250 10,-125 25,-50
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1250.
1-1250=-1249 2-625=-623 5-250=-245 10-125=-115 25-50=-25
Calculate the sum for each pair.
a=25 b=-50
The solution is the pair that gives sum -25.
\left(-n^{2}+25n\right)+\left(-50n+1250\right)
Rewrite -n^{2}-25n+1250 as \left(-n^{2}+25n\right)+\left(-50n+1250\right).
n\left(-n+25\right)+50\left(-n+25\right)
Factor out n in the first and 50 in the second group.
\left(-n+25\right)\left(n+50\right)
Factor out common term -n+25 by using distributive property.
8\left(-n+25\right)\left(n+50\right)
Rewrite the complete factored expression.
-8n^{2}-200n+10000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-8\right)\times 10000}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-200\right)±\sqrt{40000-4\left(-8\right)\times 10000}}{2\left(-8\right)}
Square -200.
n=\frac{-\left(-200\right)±\sqrt{40000+32\times 10000}}{2\left(-8\right)}
Multiply -4 times -8.
n=\frac{-\left(-200\right)±\sqrt{40000+320000}}{2\left(-8\right)}
Multiply 32 times 10000.
n=\frac{-\left(-200\right)±\sqrt{360000}}{2\left(-8\right)}
Add 40000 to 320000.
n=\frac{-\left(-200\right)±600}{2\left(-8\right)}
Take the square root of 360000.
n=\frac{200±600}{2\left(-8\right)}
The opposite of -200 is 200.
n=\frac{200±600}{-16}
Multiply 2 times -8.
n=\frac{800}{-16}
Now solve the equation n=\frac{200±600}{-16} when ± is plus. Add 200 to 600.
n=-50
Divide 800 by -16.
n=-\frac{400}{-16}
Now solve the equation n=\frac{200±600}{-16} when ± is minus. Subtract 600 from 200.
n=25
Divide -400 by -16.
-8n^{2}-200n+10000=-8\left(n-\left(-50\right)\right)\left(n-25\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -50 for x_{1} and 25 for x_{2}.
-8n^{2}-200n+10000=-8\left(n+50\right)\left(n-25\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}