Solve for x
x=\frac{\sqrt{2}-1}{100}\approx 0.004142136
x=\frac{-\sqrt{2}-1}{100}\approx -0.024142136
Graph
Share
Copied to clipboard
10000x^{2}+200x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10000x^{2}+200x-1=1-1
Subtract 1 from both sides of the equation.
10000x^{2}+200x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-200±\sqrt{200^{2}-4\times 10000\left(-1\right)}}{2\times 10000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10000 for a, 200 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\times 10000\left(-1\right)}}{2\times 10000}
Square 200.
x=\frac{-200±\sqrt{40000-40000\left(-1\right)}}{2\times 10000}
Multiply -4 times 10000.
x=\frac{-200±\sqrt{40000+40000}}{2\times 10000}
Multiply -40000 times -1.
x=\frac{-200±\sqrt{80000}}{2\times 10000}
Add 40000 to 40000.
x=\frac{-200±200\sqrt{2}}{2\times 10000}
Take the square root of 80000.
x=\frac{-200±200\sqrt{2}}{20000}
Multiply 2 times 10000.
x=\frac{200\sqrt{2}-200}{20000}
Now solve the equation x=\frac{-200±200\sqrt{2}}{20000} when ± is plus. Add -200 to 200\sqrt{2}.
x=\frac{\sqrt{2}-1}{100}
Divide -200+200\sqrt{2} by 20000.
x=\frac{-200\sqrt{2}-200}{20000}
Now solve the equation x=\frac{-200±200\sqrt{2}}{20000} when ± is minus. Subtract 200\sqrt{2} from -200.
x=\frac{-\sqrt{2}-1}{100}
Divide -200-200\sqrt{2} by 20000.
x=\frac{\sqrt{2}-1}{100} x=\frac{-\sqrt{2}-1}{100}
The equation is now solved.
10000x^{2}+200x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10000x^{2}+200x}{10000}=\frac{1}{10000}
Divide both sides by 10000.
x^{2}+\frac{200}{10000}x=\frac{1}{10000}
Dividing by 10000 undoes the multiplication by 10000.
x^{2}+\frac{1}{50}x=\frac{1}{10000}
Reduce the fraction \frac{200}{10000} to lowest terms by extracting and canceling out 200.
x^{2}+\frac{1}{50}x+\left(\frac{1}{100}\right)^{2}=\frac{1}{10000}+\left(\frac{1}{100}\right)^{2}
Divide \frac{1}{50}, the coefficient of the x term, by 2 to get \frac{1}{100}. Then add the square of \frac{1}{100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{50}x+\frac{1}{10000}=\frac{1+1}{10000}
Square \frac{1}{100} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{50}x+\frac{1}{10000}=\frac{1}{5000}
Add \frac{1}{10000} to \frac{1}{10000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{100}\right)^{2}=\frac{1}{5000}
Factor x^{2}+\frac{1}{50}x+\frac{1}{10000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{100}\right)^{2}}=\sqrt{\frac{1}{5000}}
Take the square root of both sides of the equation.
x+\frac{1}{100}=\frac{\sqrt{2}}{100} x+\frac{1}{100}=-\frac{\sqrt{2}}{100}
Simplify.
x=\frac{\sqrt{2}-1}{100} x=\frac{-\sqrt{2}-1}{100}
Subtract \frac{1}{100} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}