Solve for ρ
\rho =-\frac{35p^{2}+70p-57}{4\left(25p^{2}+50p+2\right)}
p\neq -1\text{ and }p\neq \frac{\sqrt{23}}{5}-1\text{ and }p\neq -\frac{\sqrt{23}}{5}-1
Solve for p (complex solution)
p=-\frac{2i\left(-20\rho -7\right)^{-\frac{1}{2}}\sqrt{115\rho +115}}{5}-1
p=\frac{2i\left(-20\rho -7\right)^{-\frac{1}{2}}\sqrt{115\rho +115}}{5}-1\text{, }\rho \neq -1\text{ and }\rho \neq -\frac{7}{20}
Solve for p
\left\{\begin{matrix}p=\frac{-2\sqrt{115\left(\rho +1\right)}-5\sqrt{20\rho +7}}{5\sqrt{20\rho +7}}\text{; }p=\frac{2\sqrt{115\left(\rho +1\right)}-5\sqrt{20\rho +7}}{5\sqrt{20\rho +7}}\text{, }&\rho >-\frac{7}{20}\\p=\frac{-2\sqrt{\frac{115\left(\rho +1\right)}{20\rho +7}}-5}{5}\text{; }p=\frac{2\sqrt{\frac{115\left(\rho +1\right)}{20\rho +7}}-5}{5}\text{, }&\rho <-1\end{matrix}\right.
Share
Copied to clipboard
10000\left(\rho +1\right)\left(p+1\right)^{2}=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Variable \rho cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(\rho +1\right)\left(p+1\right)^{2}, the least common multiple of 1+\rho ,\left(1+p\right)^{2}.
10000\left(\rho +1\right)\left(p^{2}+2p+1\right)=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+1\right)^{2}.
\left(10000\rho +10000\right)\left(p^{2}+2p+1\right)=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply 10000 by \rho +1.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply 10000\rho +10000 by p^{2}+2p+1.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=\left(p^{2}+2p+1\right)\times 6500+\left(\rho +1\right)\times 9200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+1\right)^{2}.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply p^{2}+2p+1 by 6500.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+6500+9200\rho +9200
Use the distributive property to multiply \rho +1 by 9200.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+15700+9200\rho
Add 6500 and 9200 to get 15700.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000-9200\rho =6500p^{2}+13000p+15700
Subtract 9200\rho from both sides.
10000\rho p^{2}+20000\rho p+800\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+15700
Combine 10000\rho and -9200\rho to get 800\rho .
10000\rho p^{2}+20000\rho p+800\rho +20000p+10000=6500p^{2}+13000p+15700-10000p^{2}
Subtract 10000p^{2} from both sides.
10000\rho p^{2}+20000\rho p+800\rho +20000p+10000=-3500p^{2}+13000p+15700
Combine 6500p^{2} and -10000p^{2} to get -3500p^{2}.
10000\rho p^{2}+20000\rho p+800\rho +10000=-3500p^{2}+13000p+15700-20000p
Subtract 20000p from both sides.
10000\rho p^{2}+20000\rho p+800\rho +10000=-3500p^{2}-7000p+15700
Combine 13000p and -20000p to get -7000p.
10000\rho p^{2}+20000\rho p+800\rho =-3500p^{2}-7000p+15700-10000
Subtract 10000 from both sides.
10000\rho p^{2}+20000\rho p+800\rho =-3500p^{2}-7000p+5700
Subtract 10000 from 15700 to get 5700.
\left(10000p^{2}+20000p+800\right)\rho =-3500p^{2}-7000p+5700
Combine all terms containing \rho .
\left(10000p^{2}+20000p+800\right)\rho =5700-7000p-3500p^{2}
The equation is in standard form.
\frac{\left(10000p^{2}+20000p+800\right)\rho }{10000p^{2}+20000p+800}=\frac{5700-7000p-3500p^{2}}{10000p^{2}+20000p+800}
Divide both sides by 800+20000p+10000p^{2}.
\rho =\frac{5700-7000p-3500p^{2}}{10000p^{2}+20000p+800}
Dividing by 800+20000p+10000p^{2} undoes the multiplication by 800+20000p+10000p^{2}.
\rho =\frac{57-70p-35p^{2}}{4\left(25p^{2}+50p+2\right)}
Divide -3500p^{2}-7000p+5700 by 800+20000p+10000p^{2}.
\rho =\frac{57-70p-35p^{2}}{4\left(25p^{2}+50p+2\right)}\text{, }\rho \neq -1
Variable \rho cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}