Skip to main content
Solve for ρ
Tick mark Image
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

10000\left(\rho +1\right)\left(p+1\right)^{2}=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Variable \rho cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(\rho +1\right)\left(p+1\right)^{2}, the least common multiple of 1+\rho ,\left(1+p\right)^{2}.
10000\left(\rho +1\right)\left(p^{2}+2p+1\right)=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+1\right)^{2}.
\left(10000\rho +10000\right)\left(p^{2}+2p+1\right)=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply 10000 by \rho +1.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=\left(p+1\right)^{2}\times 6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply 10000\rho +10000 by p^{2}+2p+1.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=\left(p^{2}+2p+1\right)\times 6500+\left(\rho +1\right)\times 9200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+1\right)^{2}.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+6500+\left(\rho +1\right)\times 9200
Use the distributive property to multiply p^{2}+2p+1 by 6500.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+6500+9200\rho +9200
Use the distributive property to multiply \rho +1 by 9200.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+15700+9200\rho
Add 6500 and 9200 to get 15700.
10000\rho p^{2}+20000\rho p+10000\rho +10000p^{2}+20000p+10000-9200\rho =6500p^{2}+13000p+15700
Subtract 9200\rho from both sides.
10000\rho p^{2}+20000\rho p+800\rho +10000p^{2}+20000p+10000=6500p^{2}+13000p+15700
Combine 10000\rho and -9200\rho to get 800\rho .
10000\rho p^{2}+20000\rho p+800\rho +20000p+10000=6500p^{2}+13000p+15700-10000p^{2}
Subtract 10000p^{2} from both sides.
10000\rho p^{2}+20000\rho p+800\rho +20000p+10000=-3500p^{2}+13000p+15700
Combine 6500p^{2} and -10000p^{2} to get -3500p^{2}.
10000\rho p^{2}+20000\rho p+800\rho +10000=-3500p^{2}+13000p+15700-20000p
Subtract 20000p from both sides.
10000\rho p^{2}+20000\rho p+800\rho +10000=-3500p^{2}-7000p+15700
Combine 13000p and -20000p to get -7000p.
10000\rho p^{2}+20000\rho p+800\rho =-3500p^{2}-7000p+15700-10000
Subtract 10000 from both sides.
10000\rho p^{2}+20000\rho p+800\rho =-3500p^{2}-7000p+5700
Subtract 10000 from 15700 to get 5700.
\left(10000p^{2}+20000p+800\right)\rho =-3500p^{2}-7000p+5700
Combine all terms containing \rho .
\left(10000p^{2}+20000p+800\right)\rho =5700-7000p-3500p^{2}
The equation is in standard form.
\frac{\left(10000p^{2}+20000p+800\right)\rho }{10000p^{2}+20000p+800}=\frac{5700-7000p-3500p^{2}}{10000p^{2}+20000p+800}
Divide both sides by 800+20000p+10000p^{2}.
\rho =\frac{5700-7000p-3500p^{2}}{10000p^{2}+20000p+800}
Dividing by 800+20000p+10000p^{2} undoes the multiplication by 800+20000p+10000p^{2}.
\rho =\frac{57-70p-35p^{2}}{4\left(25p^{2}+50p+2\right)}
Divide -3500p^{2}-7000p+5700 by 800+20000p+10000p^{2}.
\rho =\frac{57-70p-35p^{2}}{4\left(25p^{2}+50p+2\right)}\text{, }\rho \neq -1
Variable \rho cannot be equal to -1.