Solve for x
x=\frac{3\sqrt{409}-49}{100}\approx 0.116712452
x=\frac{-3\sqrt{409}-49}{100}\approx -1.096712452
Graph
Share
Copied to clipboard
\left(1000+1000x\right)\left(0.98+x\right)=1000\left(1+x\right)+108
Use the distributive property to multiply 1000 by 1+x.
980+1980x+1000x^{2}=1000\left(1+x\right)+108
Use the distributive property to multiply 1000+1000x by 0.98+x and combine like terms.
980+1980x+1000x^{2}=1000+1000x+108
Use the distributive property to multiply 1000 by 1+x.
980+1980x+1000x^{2}=1108+1000x
Add 1000 and 108 to get 1108.
980+1980x+1000x^{2}-1108=1000x
Subtract 1108 from both sides.
-128+1980x+1000x^{2}=1000x
Subtract 1108 from 980 to get -128.
-128+1980x+1000x^{2}-1000x=0
Subtract 1000x from both sides.
-128+980x+1000x^{2}=0
Combine 1980x and -1000x to get 980x.
1000x^{2}+980x-128=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-980±\sqrt{980^{2}-4\times 1000\left(-128\right)}}{2\times 1000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1000 for a, 980 for b, and -128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-980±\sqrt{960400-4\times 1000\left(-128\right)}}{2\times 1000}
Square 980.
x=\frac{-980±\sqrt{960400-4000\left(-128\right)}}{2\times 1000}
Multiply -4 times 1000.
x=\frac{-980±\sqrt{960400+512000}}{2\times 1000}
Multiply -4000 times -128.
x=\frac{-980±\sqrt{1472400}}{2\times 1000}
Add 960400 to 512000.
x=\frac{-980±60\sqrt{409}}{2\times 1000}
Take the square root of 1472400.
x=\frac{-980±60\sqrt{409}}{2000}
Multiply 2 times 1000.
x=\frac{60\sqrt{409}-980}{2000}
Now solve the equation x=\frac{-980±60\sqrt{409}}{2000} when ± is plus. Add -980 to 60\sqrt{409}.
x=\frac{3\sqrt{409}-49}{100}
Divide -980+60\sqrt{409} by 2000.
x=\frac{-60\sqrt{409}-980}{2000}
Now solve the equation x=\frac{-980±60\sqrt{409}}{2000} when ± is minus. Subtract 60\sqrt{409} from -980.
x=\frac{-3\sqrt{409}-49}{100}
Divide -980-60\sqrt{409} by 2000.
x=\frac{3\sqrt{409}-49}{100} x=\frac{-3\sqrt{409}-49}{100}
The equation is now solved.
\left(1000+1000x\right)\left(0.98+x\right)=1000\left(1+x\right)+108
Use the distributive property to multiply 1000 by 1+x.
980+1980x+1000x^{2}=1000\left(1+x\right)+108
Use the distributive property to multiply 1000+1000x by 0.98+x and combine like terms.
980+1980x+1000x^{2}=1000+1000x+108
Use the distributive property to multiply 1000 by 1+x.
980+1980x+1000x^{2}=1108+1000x
Add 1000 and 108 to get 1108.
980+1980x+1000x^{2}-1000x=1108
Subtract 1000x from both sides.
980+980x+1000x^{2}=1108
Combine 1980x and -1000x to get 980x.
980x+1000x^{2}=1108-980
Subtract 980 from both sides.
980x+1000x^{2}=128
Subtract 980 from 1108 to get 128.
1000x^{2}+980x=128
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1000x^{2}+980x}{1000}=\frac{128}{1000}
Divide both sides by 1000.
x^{2}+\frac{980}{1000}x=\frac{128}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x^{2}+\frac{49}{50}x=\frac{128}{1000}
Reduce the fraction \frac{980}{1000} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{49}{50}x=\frac{16}{125}
Reduce the fraction \frac{128}{1000} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{49}{50}x+\left(\frac{49}{100}\right)^{2}=\frac{16}{125}+\left(\frac{49}{100}\right)^{2}
Divide \frac{49}{50}, the coefficient of the x term, by 2 to get \frac{49}{100}. Then add the square of \frac{49}{100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{49}{50}x+\frac{2401}{10000}=\frac{16}{125}+\frac{2401}{10000}
Square \frac{49}{100} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{49}{50}x+\frac{2401}{10000}=\frac{3681}{10000}
Add \frac{16}{125} to \frac{2401}{10000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{49}{100}\right)^{2}=\frac{3681}{10000}
Factor x^{2}+\frac{49}{50}x+\frac{2401}{10000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{100}\right)^{2}}=\sqrt{\frac{3681}{10000}}
Take the square root of both sides of the equation.
x+\frac{49}{100}=\frac{3\sqrt{409}}{100} x+\frac{49}{100}=-\frac{3\sqrt{409}}{100}
Simplify.
x=\frac{3\sqrt{409}-49}{100} x=\frac{-3\sqrt{409}-49}{100}
Subtract \frac{49}{100} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}