Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1000x^{2}+999x+77=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
1000x^{2}+999x+77-6=6-6
Subtract 6 from both sides of the equation.
1000x^{2}+999x+77-6=0
Subtracting 6 from itself leaves 0.
1000x^{2}+999x+71=0
Subtract 6 from 77.
x=\frac{-999±\sqrt{999^{2}-4\times 1000\times 71}}{2\times 1000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1000 for a, 999 for b, and 71 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-999±\sqrt{998001-4\times 1000\times 71}}{2\times 1000}
Square 999.
x=\frac{-999±\sqrt{998001-4000\times 71}}{2\times 1000}
Multiply -4 times 1000.
x=\frac{-999±\sqrt{998001-284000}}{2\times 1000}
Multiply -4000 times 71.
x=\frac{-999±\sqrt{714001}}{2\times 1000}
Add 998001 to -284000.
x=\frac{-999±\sqrt{714001}}{2000}
Multiply 2 times 1000.
x=\frac{\sqrt{714001}-999}{2000}
Now solve the equation x=\frac{-999±\sqrt{714001}}{2000} when ± is plus. Add -999 to \sqrt{714001}.
x=\frac{-\sqrt{714001}-999}{2000}
Now solve the equation x=\frac{-999±\sqrt{714001}}{2000} when ± is minus. Subtract \sqrt{714001} from -999.
x=\frac{\sqrt{714001}-999}{2000} x=\frac{-\sqrt{714001}-999}{2000}
The equation is now solved.
1000x^{2}+999x+77=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1000x^{2}+999x+77-77=6-77
Subtract 77 from both sides of the equation.
1000x^{2}+999x=6-77
Subtracting 77 from itself leaves 0.
1000x^{2}+999x=-71
Subtract 77 from 6.
\frac{1000x^{2}+999x}{1000}=-\frac{71}{1000}
Divide both sides by 1000.
x^{2}+\frac{999}{1000}x=-\frac{71}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x^{2}+\frac{999}{1000}x+\left(\frac{999}{2000}\right)^{2}=-\frac{71}{1000}+\left(\frac{999}{2000}\right)^{2}
Divide \frac{999}{1000}, the coefficient of the x term, by 2 to get \frac{999}{2000}. Then add the square of \frac{999}{2000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{999}{1000}x+\frac{998001}{4000000}=-\frac{71}{1000}+\frac{998001}{4000000}
Square \frac{999}{2000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{999}{1000}x+\frac{998001}{4000000}=\frac{714001}{4000000}
Add -\frac{71}{1000} to \frac{998001}{4000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{999}{2000}\right)^{2}=\frac{714001}{4000000}
Factor x^{2}+\frac{999}{1000}x+\frac{998001}{4000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{999}{2000}\right)^{2}}=\sqrt{\frac{714001}{4000000}}
Take the square root of both sides of the equation.
x+\frac{999}{2000}=\frac{\sqrt{714001}}{2000} x+\frac{999}{2000}=-\frac{\sqrt{714001}}{2000}
Simplify.
x=\frac{\sqrt{714001}-999}{2000} x=\frac{-\sqrt{714001}-999}{2000}
Subtract \frac{999}{2000} from both sides of the equation.