Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-590 ab=1000\left(-561\right)=-561000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 1000x^{2}+ax+bx-561. To find a and b, set up a system to be solved.
1,-561000 2,-280500 3,-187000 4,-140250 5,-112200 6,-93500 8,-70125 10,-56100 11,-51000 12,-46750 15,-37400 17,-33000 20,-28050 22,-25500 24,-23375 25,-22440 30,-18700 33,-17000 34,-16500 40,-14025 44,-12750 50,-11220 51,-11000 55,-10200 60,-9350 66,-8500 68,-8250 75,-7480 85,-6600 88,-6375 100,-5610 102,-5500 110,-5100 120,-4675 125,-4488 132,-4250 136,-4125 150,-3740 165,-3400 170,-3300 187,-3000 200,-2805 204,-2750 220,-2550 250,-2244 255,-2200 264,-2125 275,-2040 300,-1870 330,-1700 340,-1650 374,-1500 375,-1496 408,-1375 425,-1320 440,-1275 500,-1122 510,-1100 550,-1020 561,-1000 600,-935 660,-850 680,-825 748,-750
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -561000.
1-561000=-560999 2-280500=-280498 3-187000=-186997 4-140250=-140246 5-112200=-112195 6-93500=-93494 8-70125=-70117 10-56100=-56090 11-51000=-50989 12-46750=-46738 15-37400=-37385 17-33000=-32983 20-28050=-28030 22-25500=-25478 24-23375=-23351 25-22440=-22415 30-18700=-18670 33-17000=-16967 34-16500=-16466 40-14025=-13985 44-12750=-12706 50-11220=-11170 51-11000=-10949 55-10200=-10145 60-9350=-9290 66-8500=-8434 68-8250=-8182 75-7480=-7405 85-6600=-6515 88-6375=-6287 100-5610=-5510 102-5500=-5398 110-5100=-4990 120-4675=-4555 125-4488=-4363 132-4250=-4118 136-4125=-3989 150-3740=-3590 165-3400=-3235 170-3300=-3130 187-3000=-2813 200-2805=-2605 204-2750=-2546 220-2550=-2330 250-2244=-1994 255-2200=-1945 264-2125=-1861 275-2040=-1765 300-1870=-1570 330-1700=-1370 340-1650=-1310 374-1500=-1126 375-1496=-1121 408-1375=-967 425-1320=-895 440-1275=-835 500-1122=-622 510-1100=-590 550-1020=-470 561-1000=-439 600-935=-335 660-850=-190 680-825=-145 748-750=-2
Calculate the sum for each pair.
a=-1100 b=510
The solution is the pair that gives sum -590.
\left(1000x^{2}-1100x\right)+\left(510x-561\right)
Rewrite 1000x^{2}-590x-561 as \left(1000x^{2}-1100x\right)+\left(510x-561\right).
100x\left(10x-11\right)+51\left(10x-11\right)
Factor out 100x in the first and 51 in the second group.
\left(10x-11\right)\left(100x+51\right)
Factor out common term 10x-11 by using distributive property.
x=\frac{11}{10} x=-\frac{51}{100}
To find equation solutions, solve 10x-11=0 and 100x+51=0.
1000x^{2}-590x-561=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-590\right)±\sqrt{\left(-590\right)^{2}-4\times 1000\left(-561\right)}}{2\times 1000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1000 for a, -590 for b, and -561 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-590\right)±\sqrt{348100-4\times 1000\left(-561\right)}}{2\times 1000}
Square -590.
x=\frac{-\left(-590\right)±\sqrt{348100-4000\left(-561\right)}}{2\times 1000}
Multiply -4 times 1000.
x=\frac{-\left(-590\right)±\sqrt{348100+2244000}}{2\times 1000}
Multiply -4000 times -561.
x=\frac{-\left(-590\right)±\sqrt{2592100}}{2\times 1000}
Add 348100 to 2244000.
x=\frac{-\left(-590\right)±1610}{2\times 1000}
Take the square root of 2592100.
x=\frac{590±1610}{2\times 1000}
The opposite of -590 is 590.
x=\frac{590±1610}{2000}
Multiply 2 times 1000.
x=\frac{2200}{2000}
Now solve the equation x=\frac{590±1610}{2000} when ± is plus. Add 590 to 1610.
x=\frac{11}{10}
Reduce the fraction \frac{2200}{2000} to lowest terms by extracting and canceling out 200.
x=-\frac{1020}{2000}
Now solve the equation x=\frac{590±1610}{2000} when ± is minus. Subtract 1610 from 590.
x=-\frac{51}{100}
Reduce the fraction \frac{-1020}{2000} to lowest terms by extracting and canceling out 20.
x=\frac{11}{10} x=-\frac{51}{100}
The equation is now solved.
1000x^{2}-590x-561=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1000x^{2}-590x-561-\left(-561\right)=-\left(-561\right)
Add 561 to both sides of the equation.
1000x^{2}-590x=-\left(-561\right)
Subtracting -561 from itself leaves 0.
1000x^{2}-590x=561
Subtract -561 from 0.
\frac{1000x^{2}-590x}{1000}=\frac{561}{1000}
Divide both sides by 1000.
x^{2}+\left(-\frac{590}{1000}\right)x=\frac{561}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x^{2}-\frac{59}{100}x=\frac{561}{1000}
Reduce the fraction \frac{-590}{1000} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{59}{100}x+\left(-\frac{59}{200}\right)^{2}=\frac{561}{1000}+\left(-\frac{59}{200}\right)^{2}
Divide -\frac{59}{100}, the coefficient of the x term, by 2 to get -\frac{59}{200}. Then add the square of -\frac{59}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{100}x+\frac{3481}{40000}=\frac{561}{1000}+\frac{3481}{40000}
Square -\frac{59}{200} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{100}x+\frac{3481}{40000}=\frac{25921}{40000}
Add \frac{561}{1000} to \frac{3481}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{200}\right)^{2}=\frac{25921}{40000}
Factor x^{2}-\frac{59}{100}x+\frac{3481}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{200}\right)^{2}}=\sqrt{\frac{25921}{40000}}
Take the square root of both sides of the equation.
x-\frac{59}{200}=\frac{161}{200} x-\frac{59}{200}=-\frac{161}{200}
Simplify.
x=\frac{11}{10} x=-\frac{51}{100}
Add \frac{59}{200} to both sides of the equation.