1000 \times 80 \% \div 164 \times 0.38-80
Evaluate
-\frac{3204}{41}\approx -78.146341463
Factor
-\frac{3204}{41} = -78\frac{6}{41} = -78.14634146341463
Share
Copied to clipboard
\frac{1000\times \frac{4}{5}}{164}\times 0.38-80
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{1000\times 4}{5}}{164}\times 0.38-80
Express 1000\times \frac{4}{5} as a single fraction.
\frac{\frac{4000}{5}}{164}\times 0.38-80
Multiply 1000 and 4 to get 4000.
\frac{800}{164}\times 0.38-80
Divide 4000 by 5 to get 800.
\frac{200}{41}\times 0.38-80
Reduce the fraction \frac{800}{164} to lowest terms by extracting and canceling out 4.
\frac{200}{41}\times \frac{19}{50}-80
Convert decimal number 0.38 to fraction \frac{38}{100}. Reduce the fraction \frac{38}{100} to lowest terms by extracting and canceling out 2.
\frac{200\times 19}{41\times 50}-80
Multiply \frac{200}{41} times \frac{19}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{3800}{2050}-80
Do the multiplications in the fraction \frac{200\times 19}{41\times 50}.
\frac{76}{41}-80
Reduce the fraction \frac{3800}{2050} to lowest terms by extracting and canceling out 50.
\frac{76}{41}-\frac{3280}{41}
Convert 80 to fraction \frac{3280}{41}.
\frac{76-3280}{41}
Since \frac{76}{41} and \frac{3280}{41} have the same denominator, subtract them by subtracting their numerators.
-\frac{3204}{41}
Subtract 3280 from 76 to get -3204.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}