Evaluate
\frac{1000}{523}\approx 1.912045889
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{523} = 1\frac{477}{523} = 1.9120458891013383
Share
Copied to clipboard
\begin{array}{l}\phantom{523)}\phantom{1}\\523\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{523)}0\phantom{2}\\523\overline{)1000}\\\end{array}
Since 1 is less than 523, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{523)}0\phantom{3}\\523\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{523)}00\phantom{4}\\523\overline{)1000}\\\end{array}
Since 10 is less than 523, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{523)}00\phantom{5}\\523\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{523)}000\phantom{6}\\523\overline{)1000}\\\end{array}
Since 100 is less than 523, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{523)}000\phantom{7}\\523\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{523)}0001\phantom{8}\\523\overline{)1000}\\\phantom{523)}\underline{\phantom{9}523\phantom{}}\\\phantom{523)9}477\\\end{array}
Find closest multiple of 523 to 1000. We see that 1 \times 523 = 523 is the nearest. Now subtract 523 from 1000 to get reminder 477. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }477
Since 477 is less than 523, stop the division. The reminder is 477. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}