Evaluate
\frac{8}{7}\approx 1.142857143
Factor
\frac{2 ^ {3}}{7} = 1\frac{1}{7} = 1.1428571428571428
Share
Copied to clipboard
\begin{array}{l}\phantom{875)}\phantom{1}\\875\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{875)}0\phantom{2}\\875\overline{)1000}\\\end{array}
Since 1 is less than 875, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{875)}0\phantom{3}\\875\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{875)}00\phantom{4}\\875\overline{)1000}\\\end{array}
Since 10 is less than 875, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{875)}00\phantom{5}\\875\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{875)}000\phantom{6}\\875\overline{)1000}\\\end{array}
Since 100 is less than 875, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{875)}000\phantom{7}\\875\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{875)}0001\phantom{8}\\875\overline{)1000}\\\phantom{875)}\underline{\phantom{9}875\phantom{}}\\\phantom{875)9}125\\\end{array}
Find closest multiple of 875 to 1000. We see that 1 \times 875 = 875 is the nearest. Now subtract 875 from 1000 to get reminder 125. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }125
Since 125 is less than 875, stop the division. The reminder is 125. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}