Evaluate
\frac{1000}{867}\approx 1.153402537
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{3 \cdot 17 ^ {2}} = 1\frac{133}{867} = 1.1534025374855825
Share
Copied to clipboard
\begin{array}{l}\phantom{867)}\phantom{1}\\867\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{867)}0\phantom{2}\\867\overline{)1000}\\\end{array}
Since 1 is less than 867, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{867)}0\phantom{3}\\867\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{867)}00\phantom{4}\\867\overline{)1000}\\\end{array}
Since 10 is less than 867, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{867)}00\phantom{5}\\867\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{867)}000\phantom{6}\\867\overline{)1000}\\\end{array}
Since 100 is less than 867, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{867)}000\phantom{7}\\867\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{867)}0001\phantom{8}\\867\overline{)1000}\\\phantom{867)}\underline{\phantom{9}867\phantom{}}\\\phantom{867)9}133\\\end{array}
Find closest multiple of 867 to 1000. We see that 1 \times 867 = 867 is the nearest. Now subtract 867 from 1000 to get reminder 133. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }133
Since 133 is less than 867, stop the division. The reminder is 133. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}