Evaluate
\frac{500}{201}\approx 2.487562189
Factor
\frac{2 ^ {2} \cdot 5 ^ {3}}{3 \cdot 67} = 2\frac{98}{201} = 2.487562189054726
Share
Copied to clipboard
\begin{array}{l}\phantom{402)}\phantom{1}\\402\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{402)}0\phantom{2}\\402\overline{)1000}\\\end{array}
Since 1 is less than 402, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{402)}0\phantom{3}\\402\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{402)}00\phantom{4}\\402\overline{)1000}\\\end{array}
Since 10 is less than 402, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{402)}00\phantom{5}\\402\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{402)}000\phantom{6}\\402\overline{)1000}\\\end{array}
Since 100 is less than 402, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{402)}000\phantom{7}\\402\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{402)}0002\phantom{8}\\402\overline{)1000}\\\phantom{402)}\underline{\phantom{9}804\phantom{}}\\\phantom{402)9}196\\\end{array}
Find closest multiple of 402 to 1000. We see that 2 \times 402 = 804 is the nearest. Now subtract 804 from 1000 to get reminder 196. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }196
Since 196 is less than 402, stop the division. The reminder is 196. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}