Evaluate
\frac{1000}{331}\approx 3.021148036
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{331} = 3\frac{7}{331} = 3.0211480362537766
Share
Copied to clipboard
\begin{array}{l}\phantom{331)}\phantom{1}\\331\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{331)}0\phantom{2}\\331\overline{)1000}\\\end{array}
Since 1 is less than 331, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{331)}0\phantom{3}\\331\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{331)}00\phantom{4}\\331\overline{)1000}\\\end{array}
Since 10 is less than 331, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{331)}00\phantom{5}\\331\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{331)}000\phantom{6}\\331\overline{)1000}\\\end{array}
Since 100 is less than 331, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{331)}000\phantom{7}\\331\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{331)}0003\phantom{8}\\331\overline{)1000}\\\phantom{331)}\underline{\phantom{9}993\phantom{}}\\\phantom{331)999}7\\\end{array}
Find closest multiple of 331 to 1000. We see that 3 \times 331 = 993 is the nearest. Now subtract 993 from 1000 to get reminder 7. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }7
Since 7 is less than 331, stop the division. The reminder is 7. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}