Evaluate
\frac{100}{19}\approx 5.263157895
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{19} = 5\frac{5}{19} = 5.2631578947368425
Share
Copied to clipboard
\begin{array}{l}\phantom{190)}\phantom{1}\\190\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{190)}0\phantom{2}\\190\overline{)1000}\\\end{array}
Since 1 is less than 190, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{190)}0\phantom{3}\\190\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{190)}00\phantom{4}\\190\overline{)1000}\\\end{array}
Since 10 is less than 190, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{190)}00\phantom{5}\\190\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{190)}000\phantom{6}\\190\overline{)1000}\\\end{array}
Since 100 is less than 190, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{190)}000\phantom{7}\\190\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{190)}0005\phantom{8}\\190\overline{)1000}\\\phantom{190)}\underline{\phantom{9}950\phantom{}}\\\phantom{190)99}50\\\end{array}
Find closest multiple of 190 to 1000. We see that 5 \times 190 = 950 is the nearest. Now subtract 950 from 1000 to get reminder 50. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }50
Since 50 is less than 190, stop the division. The reminder is 50. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}