Solve for p
p=-30\sqrt{1111}i\approx -0-999.94999875i
p=30\sqrt{1111}i\approx 999.94999875i
Share
Copied to clipboard
1000000+p^{2}=100
Calculate 1000 to the power of 2 and get 1000000.
p^{2}=100-1000000
Subtract 1000000 from both sides.
p^{2}=-999900
Subtract 1000000 from 100 to get -999900.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
The equation is now solved.
1000000+p^{2}=100
Calculate 1000 to the power of 2 and get 1000000.
1000000+p^{2}-100=0
Subtract 100 from both sides.
999900+p^{2}=0
Subtract 100 from 1000000 to get 999900.
p^{2}+999900=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 999900}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 999900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 999900}}{2}
Square 0.
p=\frac{0±\sqrt{-3999600}}{2}
Multiply -4 times 999900.
p=\frac{0±60\sqrt{1111}i}{2}
Take the square root of -3999600.
p=30\sqrt{1111}i
Now solve the equation p=\frac{0±60\sqrt{1111}i}{2} when ± is plus.
p=-30\sqrt{1111}i
Now solve the equation p=\frac{0±60\sqrt{1111}i}{2} when ± is minus.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}