Solve for x
x=\frac{\sqrt{36757}-225}{2}\approx -16.639424162
x=\frac{-\sqrt{36757}-225}{2}\approx -208.360575838
Graph
Share
Copied to clipboard
100\left(2x+50\right)\left(x+150+50\right)=306600
Combine x and x to get 2x.
100\left(2x+50\right)\left(x+200\right)=306600
Add 150 and 50 to get 200.
\left(200x+5000\right)\left(x+200\right)=306600
Use the distributive property to multiply 100 by 2x+50.
200x^{2}+45000x+1000000=306600
Use the distributive property to multiply 200x+5000 by x+200 and combine like terms.
200x^{2}+45000x+1000000-306600=0
Subtract 306600 from both sides.
200x^{2}+45000x+693400=0
Subtract 306600 from 1000000 to get 693400.
x=\frac{-45000±\sqrt{45000^{2}-4\times 200\times 693400}}{2\times 200}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 200 for a, 45000 for b, and 693400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45000±\sqrt{2025000000-4\times 200\times 693400}}{2\times 200}
Square 45000.
x=\frac{-45000±\sqrt{2025000000-800\times 693400}}{2\times 200}
Multiply -4 times 200.
x=\frac{-45000±\sqrt{2025000000-554720000}}{2\times 200}
Multiply -800 times 693400.
x=\frac{-45000±\sqrt{1470280000}}{2\times 200}
Add 2025000000 to -554720000.
x=\frac{-45000±200\sqrt{36757}}{2\times 200}
Take the square root of 1470280000.
x=\frac{-45000±200\sqrt{36757}}{400}
Multiply 2 times 200.
x=\frac{200\sqrt{36757}-45000}{400}
Now solve the equation x=\frac{-45000±200\sqrt{36757}}{400} when ± is plus. Add -45000 to 200\sqrt{36757}.
x=\frac{\sqrt{36757}-225}{2}
Divide -45000+200\sqrt{36757} by 400.
x=\frac{-200\sqrt{36757}-45000}{400}
Now solve the equation x=\frac{-45000±200\sqrt{36757}}{400} when ± is minus. Subtract 200\sqrt{36757} from -45000.
x=\frac{-\sqrt{36757}-225}{2}
Divide -45000-200\sqrt{36757} by 400.
x=\frac{\sqrt{36757}-225}{2} x=\frac{-\sqrt{36757}-225}{2}
The equation is now solved.
100\left(2x+50\right)\left(x+150+50\right)=306600
Combine x and x to get 2x.
100\left(2x+50\right)\left(x+200\right)=306600
Add 150 and 50 to get 200.
\left(200x+5000\right)\left(x+200\right)=306600
Use the distributive property to multiply 100 by 2x+50.
200x^{2}+45000x+1000000=306600
Use the distributive property to multiply 200x+5000 by x+200 and combine like terms.
200x^{2}+45000x=306600-1000000
Subtract 1000000 from both sides.
200x^{2}+45000x=-693400
Subtract 1000000 from 306600 to get -693400.
\frac{200x^{2}+45000x}{200}=-\frac{693400}{200}
Divide both sides by 200.
x^{2}+\frac{45000}{200}x=-\frac{693400}{200}
Dividing by 200 undoes the multiplication by 200.
x^{2}+225x=-\frac{693400}{200}
Divide 45000 by 200.
x^{2}+225x=-3467
Divide -693400 by 200.
x^{2}+225x+\left(\frac{225}{2}\right)^{2}=-3467+\left(\frac{225}{2}\right)^{2}
Divide 225, the coefficient of the x term, by 2 to get \frac{225}{2}. Then add the square of \frac{225}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+225x+\frac{50625}{4}=-3467+\frac{50625}{4}
Square \frac{225}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+225x+\frac{50625}{4}=\frac{36757}{4}
Add -3467 to \frac{50625}{4}.
\left(x+\frac{225}{2}\right)^{2}=\frac{36757}{4}
Factor x^{2}+225x+\frac{50625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{225}{2}\right)^{2}}=\sqrt{\frac{36757}{4}}
Take the square root of both sides of the equation.
x+\frac{225}{2}=\frac{\sqrt{36757}}{2} x+\frac{225}{2}=-\frac{\sqrt{36757}}{2}
Simplify.
x=\frac{\sqrt{36757}-225}{2} x=\frac{-\sqrt{36757}-225}{2}
Subtract \frac{225}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}