Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-22=100
Swap sides so that all variable terms are on the left hand side.
4x^{2}=100+22
Add 22 to both sides.
4x^{2}=122
Add 100 and 22 to get 122.
x^{2}=\frac{122}{4}
Divide both sides by 4.
x^{2}=\frac{61}{2}
Reduce the fraction \frac{122}{4} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{122}}{2} x=-\frac{\sqrt{122}}{2}
Take the square root of both sides of the equation.
4x^{2}-22=100
Swap sides so that all variable terms are on the left hand side.
4x^{2}-22-100=0
Subtract 100 from both sides.
4x^{2}-122=0
Subtract 100 from -22 to get -122.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-122\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -122 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-122\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-122\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{1952}}{2\times 4}
Multiply -16 times -122.
x=\frac{0±4\sqrt{122}}{2\times 4}
Take the square root of 1952.
x=\frac{0±4\sqrt{122}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{122}}{2}
Now solve the equation x=\frac{0±4\sqrt{122}}{8} when ± is plus.
x=-\frac{\sqrt{122}}{2}
Now solve the equation x=\frac{0±4\sqrt{122}}{8} when ± is minus.
x=\frac{\sqrt{122}}{2} x=-\frac{\sqrt{122}}{2}
The equation is now solved.