Solve for x
x = \frac{40 \sqrt{1405} - 1200}{101} \approx 2.963694902
x=\frac{-40\sqrt{1405}-1200}{101}\approx -26.72607114
Graph
Quiz
Quadratic Equation
5 problems similar to:
100=30x+ \frac{ 1 }{ 2 } \times 2.525 \times { x }^{ 2 }
Share
Copied to clipboard
100=30x+\frac{101}{80}x^{2}
Multiply \frac{1}{2} and 2.525 to get \frac{101}{80}.
30x+\frac{101}{80}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
30x+\frac{101}{80}x^{2}-100=0
Subtract 100 from both sides.
\frac{101}{80}x^{2}+30x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times \frac{101}{80}\left(-100\right)}}{2\times \frac{101}{80}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{101}{80} for a, 30 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times \frac{101}{80}\left(-100\right)}}{2\times \frac{101}{80}}
Square 30.
x=\frac{-30±\sqrt{900-\frac{101}{20}\left(-100\right)}}{2\times \frac{101}{80}}
Multiply -4 times \frac{101}{80}.
x=\frac{-30±\sqrt{900+505}}{2\times \frac{101}{80}}
Multiply -\frac{101}{20} times -100.
x=\frac{-30±\sqrt{1405}}{2\times \frac{101}{80}}
Add 900 to 505.
x=\frac{-30±\sqrt{1405}}{\frac{101}{40}}
Multiply 2 times \frac{101}{80}.
x=\frac{\sqrt{1405}-30}{\frac{101}{40}}
Now solve the equation x=\frac{-30±\sqrt{1405}}{\frac{101}{40}} when ± is plus. Add -30 to \sqrt{1405}.
x=\frac{40\sqrt{1405}-1200}{101}
Divide -30+\sqrt{1405} by \frac{101}{40} by multiplying -30+\sqrt{1405} by the reciprocal of \frac{101}{40}.
x=\frac{-\sqrt{1405}-30}{\frac{101}{40}}
Now solve the equation x=\frac{-30±\sqrt{1405}}{\frac{101}{40}} when ± is minus. Subtract \sqrt{1405} from -30.
x=\frac{-40\sqrt{1405}-1200}{101}
Divide -30-\sqrt{1405} by \frac{101}{40} by multiplying -30-\sqrt{1405} by the reciprocal of \frac{101}{40}.
x=\frac{40\sqrt{1405}-1200}{101} x=\frac{-40\sqrt{1405}-1200}{101}
The equation is now solved.
100=30x+\frac{101}{80}x^{2}
Multiply \frac{1}{2} and 2.525 to get \frac{101}{80}.
30x+\frac{101}{80}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
\frac{101}{80}x^{2}+30x=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{101}{80}x^{2}+30x}{\frac{101}{80}}=\frac{100}{\frac{101}{80}}
Divide both sides of the equation by \frac{101}{80}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{30}{\frac{101}{80}}x=\frac{100}{\frac{101}{80}}
Dividing by \frac{101}{80} undoes the multiplication by \frac{101}{80}.
x^{2}+\frac{2400}{101}x=\frac{100}{\frac{101}{80}}
Divide 30 by \frac{101}{80} by multiplying 30 by the reciprocal of \frac{101}{80}.
x^{2}+\frac{2400}{101}x=\frac{8000}{101}
Divide 100 by \frac{101}{80} by multiplying 100 by the reciprocal of \frac{101}{80}.
x^{2}+\frac{2400}{101}x+\left(\frac{1200}{101}\right)^{2}=\frac{8000}{101}+\left(\frac{1200}{101}\right)^{2}
Divide \frac{2400}{101}, the coefficient of the x term, by 2 to get \frac{1200}{101}. Then add the square of \frac{1200}{101} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}=\frac{8000}{101}+\frac{1440000}{10201}
Square \frac{1200}{101} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}=\frac{2248000}{10201}
Add \frac{8000}{101} to \frac{1440000}{10201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1200}{101}\right)^{2}=\frac{2248000}{10201}
Factor x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1200}{101}\right)^{2}}=\sqrt{\frac{2248000}{10201}}
Take the square root of both sides of the equation.
x+\frac{1200}{101}=\frac{40\sqrt{1405}}{101} x+\frac{1200}{101}=-\frac{40\sqrt{1405}}{101}
Simplify.
x=\frac{40\sqrt{1405}-1200}{101} x=\frac{-40\sqrt{1405}-1200}{101}
Subtract \frac{1200}{101} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}