Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

100=30x+\frac{101}{80}x^{2}
Multiply \frac{1}{2} and 2.525 to get \frac{101}{80}.
30x+\frac{101}{80}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
30x+\frac{101}{80}x^{2}-100=0
Subtract 100 from both sides.
\frac{101}{80}x^{2}+30x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times \frac{101}{80}\left(-100\right)}}{2\times \frac{101}{80}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{101}{80} for a, 30 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times \frac{101}{80}\left(-100\right)}}{2\times \frac{101}{80}}
Square 30.
x=\frac{-30±\sqrt{900-\frac{101}{20}\left(-100\right)}}{2\times \frac{101}{80}}
Multiply -4 times \frac{101}{80}.
x=\frac{-30±\sqrt{900+505}}{2\times \frac{101}{80}}
Multiply -\frac{101}{20} times -100.
x=\frac{-30±\sqrt{1405}}{2\times \frac{101}{80}}
Add 900 to 505.
x=\frac{-30±\sqrt{1405}}{\frac{101}{40}}
Multiply 2 times \frac{101}{80}.
x=\frac{\sqrt{1405}-30}{\frac{101}{40}}
Now solve the equation x=\frac{-30±\sqrt{1405}}{\frac{101}{40}} when ± is plus. Add -30 to \sqrt{1405}.
x=\frac{40\sqrt{1405}-1200}{101}
Divide -30+\sqrt{1405} by \frac{101}{40} by multiplying -30+\sqrt{1405} by the reciprocal of \frac{101}{40}.
x=\frac{-\sqrt{1405}-30}{\frac{101}{40}}
Now solve the equation x=\frac{-30±\sqrt{1405}}{\frac{101}{40}} when ± is minus. Subtract \sqrt{1405} from -30.
x=\frac{-40\sqrt{1405}-1200}{101}
Divide -30-\sqrt{1405} by \frac{101}{40} by multiplying -30-\sqrt{1405} by the reciprocal of \frac{101}{40}.
x=\frac{40\sqrt{1405}-1200}{101} x=\frac{-40\sqrt{1405}-1200}{101}
The equation is now solved.
100=30x+\frac{101}{80}x^{2}
Multiply \frac{1}{2} and 2.525 to get \frac{101}{80}.
30x+\frac{101}{80}x^{2}=100
Swap sides so that all variable terms are on the left hand side.
\frac{101}{80}x^{2}+30x=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{101}{80}x^{2}+30x}{\frac{101}{80}}=\frac{100}{\frac{101}{80}}
Divide both sides of the equation by \frac{101}{80}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{30}{\frac{101}{80}}x=\frac{100}{\frac{101}{80}}
Dividing by \frac{101}{80} undoes the multiplication by \frac{101}{80}.
x^{2}+\frac{2400}{101}x=\frac{100}{\frac{101}{80}}
Divide 30 by \frac{101}{80} by multiplying 30 by the reciprocal of \frac{101}{80}.
x^{2}+\frac{2400}{101}x=\frac{8000}{101}
Divide 100 by \frac{101}{80} by multiplying 100 by the reciprocal of \frac{101}{80}.
x^{2}+\frac{2400}{101}x+\left(\frac{1200}{101}\right)^{2}=\frac{8000}{101}+\left(\frac{1200}{101}\right)^{2}
Divide \frac{2400}{101}, the coefficient of the x term, by 2 to get \frac{1200}{101}. Then add the square of \frac{1200}{101} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}=\frac{8000}{101}+\frac{1440000}{10201}
Square \frac{1200}{101} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}=\frac{2248000}{10201}
Add \frac{8000}{101} to \frac{1440000}{10201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1200}{101}\right)^{2}=\frac{2248000}{10201}
Factor x^{2}+\frac{2400}{101}x+\frac{1440000}{10201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1200}{101}\right)^{2}}=\sqrt{\frac{2248000}{10201}}
Take the square root of both sides of the equation.
x+\frac{1200}{101}=\frac{40\sqrt{1405}}{101} x+\frac{1200}{101}=-\frac{40\sqrt{1405}}{101}
Simplify.
x=\frac{40\sqrt{1405}-1200}{101} x=\frac{-40\sqrt{1405}-1200}{101}
Subtract \frac{1200}{101} from both sides of the equation.