Solve for x
x = \frac{50 \sqrt{1265} + 750}{13} \approx 194.487840337
x=\frac{750-50\sqrt{1265}}{13}\approx -79.103224952
Graph
Share
Copied to clipboard
0.0065x^{2}-0.75x=100
Swap sides so that all variable terms are on the left hand side.
0.0065x^{2}-0.75x-100=0
Subtract 100 from both sides.
x=\frac{-\left(-0.75\right)±\sqrt{\left(-0.75\right)^{2}-4\times 0.0065\left(-100\right)}}{2\times 0.0065}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0065 for a, -0.75 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.75\right)±\sqrt{0.5625-4\times 0.0065\left(-100\right)}}{2\times 0.0065}
Square -0.75 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.75\right)±\sqrt{0.5625-0.026\left(-100\right)}}{2\times 0.0065}
Multiply -4 times 0.0065.
x=\frac{-\left(-0.75\right)±\sqrt{0.5625+2.6}}{2\times 0.0065}
Multiply -0.026 times -100.
x=\frac{-\left(-0.75\right)±\sqrt{3.1625}}{2\times 0.0065}
Add 0.5625 to 2.6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.75\right)±\frac{\sqrt{1265}}{20}}{2\times 0.0065}
Take the square root of 3.1625.
x=\frac{0.75±\frac{\sqrt{1265}}{20}}{2\times 0.0065}
The opposite of -0.75 is 0.75.
x=\frac{0.75±\frac{\sqrt{1265}}{20}}{0.013}
Multiply 2 times 0.0065.
x=\frac{\frac{\sqrt{1265}}{20}+\frac{3}{4}}{0.013}
Now solve the equation x=\frac{0.75±\frac{\sqrt{1265}}{20}}{0.013} when ± is plus. Add 0.75 to \frac{\sqrt{1265}}{20}.
x=\frac{50\sqrt{1265}+750}{13}
Divide \frac{3}{4}+\frac{\sqrt{1265}}{20} by 0.013 by multiplying \frac{3}{4}+\frac{\sqrt{1265}}{20} by the reciprocal of 0.013.
x=\frac{-\frac{\sqrt{1265}}{20}+\frac{3}{4}}{0.013}
Now solve the equation x=\frac{0.75±\frac{\sqrt{1265}}{20}}{0.013} when ± is minus. Subtract \frac{\sqrt{1265}}{20} from 0.75.
x=\frac{750-50\sqrt{1265}}{13}
Divide \frac{3}{4}-\frac{\sqrt{1265}}{20} by 0.013 by multiplying \frac{3}{4}-\frac{\sqrt{1265}}{20} by the reciprocal of 0.013.
x=\frac{50\sqrt{1265}+750}{13} x=\frac{750-50\sqrt{1265}}{13}
The equation is now solved.
0.0065x^{2}-0.75x=100
Swap sides so that all variable terms are on the left hand side.
\frac{0.0065x^{2}-0.75x}{0.0065}=\frac{100}{0.0065}
Divide both sides of the equation by 0.0065, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.75}{0.0065}\right)x=\frac{100}{0.0065}
Dividing by 0.0065 undoes the multiplication by 0.0065.
x^{2}-\frac{1500}{13}x=\frac{100}{0.0065}
Divide -0.75 by 0.0065 by multiplying -0.75 by the reciprocal of 0.0065.
x^{2}-\frac{1500}{13}x=\frac{200000}{13}
Divide 100 by 0.0065 by multiplying 100 by the reciprocal of 0.0065.
x^{2}-\frac{1500}{13}x+\left(-\frac{750}{13}\right)^{2}=\frac{200000}{13}+\left(-\frac{750}{13}\right)^{2}
Divide -\frac{1500}{13}, the coefficient of the x term, by 2 to get -\frac{750}{13}. Then add the square of -\frac{750}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1500}{13}x+\frac{562500}{169}=\frac{200000}{13}+\frac{562500}{169}
Square -\frac{750}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1500}{13}x+\frac{562500}{169}=\frac{3162500}{169}
Add \frac{200000}{13} to \frac{562500}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{750}{13}\right)^{2}=\frac{3162500}{169}
Factor x^{2}-\frac{1500}{13}x+\frac{562500}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{750}{13}\right)^{2}}=\sqrt{\frac{3162500}{169}}
Take the square root of both sides of the equation.
x-\frac{750}{13}=\frac{50\sqrt{1265}}{13} x-\frac{750}{13}=-\frac{50\sqrt{1265}}{13}
Simplify.
x=\frac{50\sqrt{1265}+750}{13} x=\frac{750-50\sqrt{1265}}{13}
Add \frac{750}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}