Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(100-x\right)
Factor out x.
-x^{2}+100x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±100}{2\left(-1\right)}
Take the square root of 100^{2}.
x=\frac{-100±100}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-100±100}{-2} when ± is plus. Add -100 to 100.
x=0
Divide 0 by -2.
x=-\frac{200}{-2}
Now solve the equation x=\frac{-100±100}{-2} when ± is minus. Subtract 100 from -100.
x=100
Divide -200 by -2.
-x^{2}+100x=-x\left(x-100\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 100 for x_{2}.