Solve for x
x = \frac{3 \sqrt{33} - 15}{2} \approx 1.11684397
x=\frac{-3\sqrt{33}-15}{2}\approx -16.11684397
Graph
Share
Copied to clipboard
60x+4x^{2}-72=0
Combine 100x and -40x to get 60x.
4x^{2}+60x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\times 4\left(-72\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 60 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 4\left(-72\right)}}{2\times 4}
Square 60.
x=\frac{-60±\sqrt{3600-16\left(-72\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-60±\sqrt{3600+1152}}{2\times 4}
Multiply -16 times -72.
x=\frac{-60±\sqrt{4752}}{2\times 4}
Add 3600 to 1152.
x=\frac{-60±12\sqrt{33}}{2\times 4}
Take the square root of 4752.
x=\frac{-60±12\sqrt{33}}{8}
Multiply 2 times 4.
x=\frac{12\sqrt{33}-60}{8}
Now solve the equation x=\frac{-60±12\sqrt{33}}{8} when ± is plus. Add -60 to 12\sqrt{33}.
x=\frac{3\sqrt{33}-15}{2}
Divide -60+12\sqrt{33} by 8.
x=\frac{-12\sqrt{33}-60}{8}
Now solve the equation x=\frac{-60±12\sqrt{33}}{8} when ± is minus. Subtract 12\sqrt{33} from -60.
x=\frac{-3\sqrt{33}-15}{2}
Divide -60-12\sqrt{33} by 8.
x=\frac{3\sqrt{33}-15}{2} x=\frac{-3\sqrt{33}-15}{2}
The equation is now solved.
60x+4x^{2}-72=0
Combine 100x and -40x to get 60x.
60x+4x^{2}=72
Add 72 to both sides. Anything plus zero gives itself.
4x^{2}+60x=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+60x}{4}=\frac{72}{4}
Divide both sides by 4.
x^{2}+\frac{60}{4}x=\frac{72}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+15x=\frac{72}{4}
Divide 60 by 4.
x^{2}+15x=18
Divide 72 by 4.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=18+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=18+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{297}{4}
Add 18 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{297}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{297}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{3\sqrt{33}}{2} x+\frac{15}{2}=-\frac{3\sqrt{33}}{2}
Simplify.
x=\frac{3\sqrt{33}-15}{2} x=\frac{-3\sqrt{33}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}