Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

20\left(5x^{2}-x\right)
Factor out 20.
x\left(5x-1\right)
Consider 5x^{2}-x. Factor out x.
20x\left(5x-1\right)
Rewrite the complete factored expression.
100x^{2}-20x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 100}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±20}{2\times 100}
Take the square root of \left(-20\right)^{2}.
x=\frac{20±20}{2\times 100}
The opposite of -20 is 20.
x=\frac{20±20}{200}
Multiply 2 times 100.
x=\frac{40}{200}
Now solve the equation x=\frac{20±20}{200} when ± is plus. Add 20 to 20.
x=\frac{1}{5}
Reduce the fraction \frac{40}{200} to lowest terms by extracting and canceling out 40.
x=\frac{0}{200}
Now solve the equation x=\frac{20±20}{200} when ± is minus. Subtract 20 from 20.
x=0
Divide 0 by 200.
100x^{2}-20x=100\left(x-\frac{1}{5}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and 0 for x_{2}.
100x^{2}-20x=100\times \frac{5x-1}{5}x
Subtract \frac{1}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
100x^{2}-20x=20\left(5x-1\right)x
Cancel out 5, the greatest common factor in 100 and 5.