Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

100x^{2}+8x+6\times 9=5833
Calculate 3 to the power of 2 and get 9.
100x^{2}+8x+54=5833
Multiply 6 and 9 to get 54.
100x^{2}+8x+54-5833=0
Subtract 5833 from both sides.
100x^{2}+8x-5779=0
Subtract 5833 from 54 to get -5779.
x=\frac{-8±\sqrt{8^{2}-4\times 100\left(-5779\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 8 for b, and -5779 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 100\left(-5779\right)}}{2\times 100}
Square 8.
x=\frac{-8±\sqrt{64-400\left(-5779\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-8±\sqrt{64+2311600}}{2\times 100}
Multiply -400 times -5779.
x=\frac{-8±\sqrt{2311664}}{2\times 100}
Add 64 to 2311600.
x=\frac{-8±4\sqrt{144479}}{2\times 100}
Take the square root of 2311664.
x=\frac{-8±4\sqrt{144479}}{200}
Multiply 2 times 100.
x=\frac{4\sqrt{144479}-8}{200}
Now solve the equation x=\frac{-8±4\sqrt{144479}}{200} when ± is plus. Add -8 to 4\sqrt{144479}.
x=\frac{\sqrt{144479}}{50}-\frac{1}{25}
Divide -8+4\sqrt{144479} by 200.
x=\frac{-4\sqrt{144479}-8}{200}
Now solve the equation x=\frac{-8±4\sqrt{144479}}{200} when ± is minus. Subtract 4\sqrt{144479} from -8.
x=-\frac{\sqrt{144479}}{50}-\frac{1}{25}
Divide -8-4\sqrt{144479} by 200.
x=\frac{\sqrt{144479}}{50}-\frac{1}{25} x=-\frac{\sqrt{144479}}{50}-\frac{1}{25}
The equation is now solved.
100x^{2}+8x+6\times 9=5833
Calculate 3 to the power of 2 and get 9.
100x^{2}+8x+54=5833
Multiply 6 and 9 to get 54.
100x^{2}+8x=5833-54
Subtract 54 from both sides.
100x^{2}+8x=5779
Subtract 54 from 5833 to get 5779.
\frac{100x^{2}+8x}{100}=\frac{5779}{100}
Divide both sides by 100.
x^{2}+\frac{8}{100}x=\frac{5779}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+\frac{2}{25}x=\frac{5779}{100}
Reduce the fraction \frac{8}{100} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{2}{25}x+\left(\frac{1}{25}\right)^{2}=\frac{5779}{100}+\left(\frac{1}{25}\right)^{2}
Divide \frac{2}{25}, the coefficient of the x term, by 2 to get \frac{1}{25}. Then add the square of \frac{1}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{25}x+\frac{1}{625}=\frac{5779}{100}+\frac{1}{625}
Square \frac{1}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{25}x+\frac{1}{625}=\frac{144479}{2500}
Add \frac{5779}{100} to \frac{1}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{25}\right)^{2}=\frac{144479}{2500}
Factor x^{2}+\frac{2}{25}x+\frac{1}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{25}\right)^{2}}=\sqrt{\frac{144479}{2500}}
Take the square root of both sides of the equation.
x+\frac{1}{25}=\frac{\sqrt{144479}}{50} x+\frac{1}{25}=-\frac{\sqrt{144479}}{50}
Simplify.
x=\frac{\sqrt{144479}}{50}-\frac{1}{25} x=-\frac{\sqrt{144479}}{50}-\frac{1}{25}
Subtract \frac{1}{25} from both sides of the equation.