Solve for x
x = -\frac{27}{10} = -2\frac{7}{10} = -2.7
x=\frac{7}{10}=0.7
Graph
Share
Copied to clipboard
a+b=200 ab=100\left(-189\right)=-18900
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 100x^{2}+ax+bx-189. To find a and b, set up a system to be solved.
-1,18900 -2,9450 -3,6300 -4,4725 -5,3780 -6,3150 -7,2700 -9,2100 -10,1890 -12,1575 -14,1350 -15,1260 -18,1050 -20,945 -21,900 -25,756 -27,700 -28,675 -30,630 -35,540 -36,525 -42,450 -45,420 -50,378 -54,350 -60,315 -63,300 -70,270 -75,252 -84,225 -90,210 -100,189 -105,180 -108,175 -126,150 -135,140
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18900.
-1+18900=18899 -2+9450=9448 -3+6300=6297 -4+4725=4721 -5+3780=3775 -6+3150=3144 -7+2700=2693 -9+2100=2091 -10+1890=1880 -12+1575=1563 -14+1350=1336 -15+1260=1245 -18+1050=1032 -20+945=925 -21+900=879 -25+756=731 -27+700=673 -28+675=647 -30+630=600 -35+540=505 -36+525=489 -42+450=408 -45+420=375 -50+378=328 -54+350=296 -60+315=255 -63+300=237 -70+270=200 -75+252=177 -84+225=141 -90+210=120 -100+189=89 -105+180=75 -108+175=67 -126+150=24 -135+140=5
Calculate the sum for each pair.
a=-70 b=270
The solution is the pair that gives sum 200.
\left(100x^{2}-70x\right)+\left(270x-189\right)
Rewrite 100x^{2}+200x-189 as \left(100x^{2}-70x\right)+\left(270x-189\right).
10x\left(10x-7\right)+27\left(10x-7\right)
Factor out 10x in the first and 27 in the second group.
\left(10x-7\right)\left(10x+27\right)
Factor out common term 10x-7 by using distributive property.
x=\frac{7}{10} x=-\frac{27}{10}
To find equation solutions, solve 10x-7=0 and 10x+27=0.
100x^{2}+200x-189=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\times 100\left(-189\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 200 for b, and -189 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\times 100\left(-189\right)}}{2\times 100}
Square 200.
x=\frac{-200±\sqrt{40000-400\left(-189\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-200±\sqrt{40000+75600}}{2\times 100}
Multiply -400 times -189.
x=\frac{-200±\sqrt{115600}}{2\times 100}
Add 40000 to 75600.
x=\frac{-200±340}{2\times 100}
Take the square root of 115600.
x=\frac{-200±340}{200}
Multiply 2 times 100.
x=\frac{140}{200}
Now solve the equation x=\frac{-200±340}{200} when ± is plus. Add -200 to 340.
x=\frac{7}{10}
Reduce the fraction \frac{140}{200} to lowest terms by extracting and canceling out 20.
x=-\frac{540}{200}
Now solve the equation x=\frac{-200±340}{200} when ± is minus. Subtract 340 from -200.
x=-\frac{27}{10}
Reduce the fraction \frac{-540}{200} to lowest terms by extracting and canceling out 20.
x=\frac{7}{10} x=-\frac{27}{10}
The equation is now solved.
100x^{2}+200x-189=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
100x^{2}+200x-189-\left(-189\right)=-\left(-189\right)
Add 189 to both sides of the equation.
100x^{2}+200x=-\left(-189\right)
Subtracting -189 from itself leaves 0.
100x^{2}+200x=189
Subtract -189 from 0.
\frac{100x^{2}+200x}{100}=\frac{189}{100}
Divide both sides by 100.
x^{2}+\frac{200}{100}x=\frac{189}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+2x=\frac{189}{100}
Divide 200 by 100.
x^{2}+2x+1^{2}=\frac{189}{100}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{189}{100}+1
Square 1.
x^{2}+2x+1=\frac{289}{100}
Add \frac{189}{100} to 1.
\left(x+1\right)^{2}=\frac{289}{100}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{289}{100}}
Take the square root of both sides of the equation.
x+1=\frac{17}{10} x+1=-\frac{17}{10}
Simplify.
x=\frac{7}{10} x=-\frac{27}{10}
Subtract 1 from both sides of the equation.
x ^ 2 +2x -\frac{189}{100} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 100
r + s = -2 rs = -\frac{189}{100}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -1 - u s = -1 + u
Two numbers r and s sum up to -2 exactly when the average of the two numbers is \frac{1}{2}*-2 = -1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-1 - u) (-1 + u) = -\frac{189}{100}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{189}{100}
1 - u^2 = -\frac{189}{100}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{189}{100}-1 = -\frac{289}{100}
Simplify the expression by subtracting 1 on both sides
u^2 = \frac{289}{100} u = \pm\sqrt{\frac{289}{100}} = \pm \frac{17}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-1 - \frac{17}{10} = -2.700 s = -1 + \frac{17}{10} = 0.700
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}