Solve for x
x=-\frac{1}{5}=-0.2
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
100\times 25\left(1-x\right)^{2}=3600
Subtract 35 from 60 to get 25.
2500\left(1-x\right)^{2}=3600
Multiply 100 and 25 to get 2500.
2500\left(1-2x+x^{2}\right)=3600
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
2500-5000x+2500x^{2}=3600
Use the distributive property to multiply 2500 by 1-2x+x^{2}.
2500-5000x+2500x^{2}-3600=0
Subtract 3600 from both sides.
-1100-5000x+2500x^{2}=0
Subtract 3600 from 2500 to get -1100.
-11-50x+25x^{2}=0
Divide both sides by 100.
25x^{2}-50x-11=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-50 ab=25\left(-11\right)=-275
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx-11. To find a and b, set up a system to be solved.
1,-275 5,-55 11,-25
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -275.
1-275=-274 5-55=-50 11-25=-14
Calculate the sum for each pair.
a=-55 b=5
The solution is the pair that gives sum -50.
\left(25x^{2}-55x\right)+\left(5x-11\right)
Rewrite 25x^{2}-50x-11 as \left(25x^{2}-55x\right)+\left(5x-11\right).
5x\left(5x-11\right)+5x-11
Factor out 5x in 25x^{2}-55x.
\left(5x-11\right)\left(5x+1\right)
Factor out common term 5x-11 by using distributive property.
x=\frac{11}{5} x=-\frac{1}{5}
To find equation solutions, solve 5x-11=0 and 5x+1=0.
100\times 25\left(1-x\right)^{2}=3600
Subtract 35 from 60 to get 25.
2500\left(1-x\right)^{2}=3600
Multiply 100 and 25 to get 2500.
2500\left(1-2x+x^{2}\right)=3600
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
2500-5000x+2500x^{2}=3600
Use the distributive property to multiply 2500 by 1-2x+x^{2}.
2500-5000x+2500x^{2}-3600=0
Subtract 3600 from both sides.
-1100-5000x+2500x^{2}=0
Subtract 3600 from 2500 to get -1100.
2500x^{2}-5000x-1100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5000\right)±\sqrt{\left(-5000\right)^{2}-4\times 2500\left(-1100\right)}}{2\times 2500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2500 for a, -5000 for b, and -1100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5000\right)±\sqrt{25000000-4\times 2500\left(-1100\right)}}{2\times 2500}
Square -5000.
x=\frac{-\left(-5000\right)±\sqrt{25000000-10000\left(-1100\right)}}{2\times 2500}
Multiply -4 times 2500.
x=\frac{-\left(-5000\right)±\sqrt{25000000+11000000}}{2\times 2500}
Multiply -10000 times -1100.
x=\frac{-\left(-5000\right)±\sqrt{36000000}}{2\times 2500}
Add 25000000 to 11000000.
x=\frac{-\left(-5000\right)±6000}{2\times 2500}
Take the square root of 36000000.
x=\frac{5000±6000}{2\times 2500}
The opposite of -5000 is 5000.
x=\frac{5000±6000}{5000}
Multiply 2 times 2500.
x=\frac{11000}{5000}
Now solve the equation x=\frac{5000±6000}{5000} when ± is plus. Add 5000 to 6000.
x=\frac{11}{5}
Reduce the fraction \frac{11000}{5000} to lowest terms by extracting and canceling out 1000.
x=-\frac{1000}{5000}
Now solve the equation x=\frac{5000±6000}{5000} when ± is minus. Subtract 6000 from 5000.
x=-\frac{1}{5}
Reduce the fraction \frac{-1000}{5000} to lowest terms by extracting and canceling out 1000.
x=\frac{11}{5} x=-\frac{1}{5}
The equation is now solved.
100\times 25\left(1-x\right)^{2}=3600
Subtract 35 from 60 to get 25.
2500\left(1-x\right)^{2}=3600
Multiply 100 and 25 to get 2500.
2500\left(1-2x+x^{2}\right)=3600
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
2500-5000x+2500x^{2}=3600
Use the distributive property to multiply 2500 by 1-2x+x^{2}.
-5000x+2500x^{2}=3600-2500
Subtract 2500 from both sides.
-5000x+2500x^{2}=1100
Subtract 2500 from 3600 to get 1100.
2500x^{2}-5000x=1100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2500x^{2}-5000x}{2500}=\frac{1100}{2500}
Divide both sides by 2500.
x^{2}+\left(-\frac{5000}{2500}\right)x=\frac{1100}{2500}
Dividing by 2500 undoes the multiplication by 2500.
x^{2}-2x=\frac{1100}{2500}
Divide -5000 by 2500.
x^{2}-2x=\frac{11}{25}
Reduce the fraction \frac{1100}{2500} to lowest terms by extracting and canceling out 100.
x^{2}-2x+1=\frac{11}{25}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{36}{25}
Add \frac{11}{25} to 1.
\left(x-1\right)^{2}=\frac{36}{25}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{36}{25}}
Take the square root of both sides of the equation.
x-1=\frac{6}{5} x-1=-\frac{6}{5}
Simplify.
x=\frac{11}{5} x=-\frac{1}{5}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}