Evaluate
\frac{1061416090100}{10510100501}\approx 100.990099
Factor
\frac{2 ^ {2} \cdot 5 ^ {2} \cdot 2549 \cdot 4164049}{101 ^ {5}} = 100\frac{10406040000}{10510100501} = 100.99009900038634
Quiz
Arithmetic
5 problems similar to:
100 ( 1 - \frac { 1 } { 101 ^ { 5 } } ) + \frac { 100 } { 101 }
Share
Copied to clipboard
100\left(1-\frac{1}{10510100501}\right)+\frac{100}{101}
Calculate 101 to the power of 5 and get 10510100501.
100\left(\frac{10510100501}{10510100501}-\frac{1}{10510100501}\right)+\frac{100}{101}
Convert 1 to fraction \frac{10510100501}{10510100501}.
100\times \frac{10510100501-1}{10510100501}+\frac{100}{101}
Since \frac{10510100501}{10510100501} and \frac{1}{10510100501} have the same denominator, subtract them by subtracting their numerators.
100\times \frac{10510100500}{10510100501}+\frac{100}{101}
Subtract 1 from 10510100501 to get 10510100500.
\frac{100\times 10510100500}{10510100501}+\frac{100}{101}
Express 100\times \frac{10510100500}{10510100501} as a single fraction.
\frac{1051010050000}{10510100501}+\frac{100}{101}
Multiply 100 and 10510100500 to get 1051010050000.
\frac{1051010050000}{10510100501}+\frac{10406040100}{10510100501}
Least common multiple of 10510100501 and 101 is 10510100501. Convert \frac{1051010050000}{10510100501} and \frac{100}{101} to fractions with denominator 10510100501.
\frac{1051010050000+10406040100}{10510100501}
Since \frac{1051010050000}{10510100501} and \frac{10406040100}{10510100501} have the same denominator, add them by adding their numerators.
\frac{1061416090100}{10510100501}
Add 1051010050000 and 10406040100 to get 1061416090100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}