Evaluate
100
Factor
2^{2}\times 5^{2}
Share
Copied to clipboard
100\left(1-\frac{1}{1.0510100501}\right)+\frac{100}{1.01^{5}}
Calculate 1.01 to the power of 5 and get 1.0510100501.
100\left(1-\frac{10000000000}{10510100501}\right)+\frac{100}{1.01^{5}}
Expand \frac{1}{1.0510100501} by multiplying both numerator and the denominator by 10000000000.
100\left(\frac{10510100501}{10510100501}-\frac{10000000000}{10510100501}\right)+\frac{100}{1.01^{5}}
Convert 1 to fraction \frac{10510100501}{10510100501}.
100\times \frac{10510100501-10000000000}{10510100501}+\frac{100}{1.01^{5}}
Since \frac{10510100501}{10510100501} and \frac{10000000000}{10510100501} have the same denominator, subtract them by subtracting their numerators.
100\times \frac{510100501}{10510100501}+\frac{100}{1.01^{5}}
Subtract 10000000000 from 10510100501 to get 510100501.
\frac{100\times 510100501}{10510100501}+\frac{100}{1.01^{5}}
Express 100\times \frac{510100501}{10510100501} as a single fraction.
\frac{51010050100}{10510100501}+\frac{100}{1.01^{5}}
Multiply 100 and 510100501 to get 51010050100.
\frac{51010050100}{10510100501}+\frac{100}{1.0510100501}
Calculate 1.01 to the power of 5 and get 1.0510100501.
\frac{51010050100}{10510100501}+\frac{1000000000000}{10510100501}
Expand \frac{100}{1.0510100501} by multiplying both numerator and the denominator by 10000000000.
\frac{51010050100+1000000000000}{10510100501}
Since \frac{51010050100}{10510100501} and \frac{1000000000000}{10510100501} have the same denominator, add them by adding their numerators.
\frac{1051010050100}{10510100501}
Add 51010050100 and 1000000000000 to get 1051010050100.
100
Divide 1051010050100 by 10510100501 to get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}