100 \times ( 1 + 1.11 \% ) \times ( 1 + 14.7 \% ) \times ( 1 + x ) = 124.92
Solve for x
x=\frac{894683}{11597317}\approx 0.077145688
Graph
Share
Copied to clipboard
100\left(1+\frac{111}{10000}\right)\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Expand \frac{1.11}{100} by multiplying both numerator and the denominator by 100.
100\left(\frac{10000}{10000}+\frac{111}{10000}\right)\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Convert 1 to fraction \frac{10000}{10000}.
100\times \frac{10000+111}{10000}\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Since \frac{10000}{10000} and \frac{111}{10000} have the same denominator, add them by adding their numerators.
100\times \frac{10111}{10000}\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Add 10000 and 111 to get 10111.
\frac{100\times 10111}{10000}\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Express 100\times \frac{10111}{10000} as a single fraction.
\frac{1011100}{10000}\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Multiply 100 and 10111 to get 1011100.
\frac{10111}{100}\left(1+\frac{14.7}{100}\right)\left(1+x\right)=124.92
Reduce the fraction \frac{1011100}{10000} to lowest terms by extracting and canceling out 100.
\frac{10111}{100}\left(1+\frac{147}{1000}\right)\left(1+x\right)=124.92
Expand \frac{14.7}{100} by multiplying both numerator and the denominator by 10.
\frac{10111}{100}\left(\frac{1000}{1000}+\frac{147}{1000}\right)\left(1+x\right)=124.92
Convert 1 to fraction \frac{1000}{1000}.
\frac{10111}{100}\times \frac{1000+147}{1000}\left(1+x\right)=124.92
Since \frac{1000}{1000} and \frac{147}{1000} have the same denominator, add them by adding their numerators.
\frac{10111}{100}\times \frac{1147}{1000}\left(1+x\right)=124.92
Add 1000 and 147 to get 1147.
\frac{10111\times 1147}{100\times 1000}\left(1+x\right)=124.92
Multiply \frac{10111}{100} times \frac{1147}{1000} by multiplying numerator times numerator and denominator times denominator.
\frac{11597317}{100000}\left(1+x\right)=124.92
Do the multiplications in the fraction \frac{10111\times 1147}{100\times 1000}.
\frac{11597317}{100000}+\frac{11597317}{100000}x=124.92
Use the distributive property to multiply \frac{11597317}{100000} by 1+x.
\frac{11597317}{100000}x=124.92-\frac{11597317}{100000}
Subtract \frac{11597317}{100000} from both sides.
\frac{11597317}{100000}x=\frac{3123}{25}-\frac{11597317}{100000}
Convert decimal number 124.92 to fraction \frac{12492}{100}. Reduce the fraction \frac{12492}{100} to lowest terms by extracting and canceling out 4.
\frac{11597317}{100000}x=\frac{12492000}{100000}-\frac{11597317}{100000}
Least common multiple of 25 and 100000 is 100000. Convert \frac{3123}{25} and \frac{11597317}{100000} to fractions with denominator 100000.
\frac{11597317}{100000}x=\frac{12492000-11597317}{100000}
Since \frac{12492000}{100000} and \frac{11597317}{100000} have the same denominator, subtract them by subtracting their numerators.
\frac{11597317}{100000}x=\frac{894683}{100000}
Subtract 11597317 from 12492000 to get 894683.
x=\frac{894683}{100000}\times \frac{100000}{11597317}
Multiply both sides by \frac{100000}{11597317}, the reciprocal of \frac{11597317}{100000}.
x=\frac{894683\times 100000}{100000\times 11597317}
Multiply \frac{894683}{100000} times \frac{100000}{11597317} by multiplying numerator times numerator and denominator times denominator.
x=\frac{894683}{11597317}
Cancel out 100000 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}