Evaluate
\frac{3793}{150}\approx 25.286666667
Factor
\frac{3793}{2 \cdot 3 \cdot 5 ^ {2}} = 25\frac{43}{150} = 25.286666666666665
Quiz
Arithmetic
5 problems similar to:
100 \times ( { 0.22 }^{ 2 } \div 0.24+ { 0.16 }^{ 2 } \div 0.5)
Share
Copied to clipboard
100\left(\frac{0.0484}{0.24}+\frac{0.16^{2}}{0.5}\right)
Calculate 0.22 to the power of 2 and get 0.0484.
100\left(\frac{484}{2400}+\frac{0.16^{2}}{0.5}\right)
Expand \frac{0.0484}{0.24} by multiplying both numerator and the denominator by 10000.
100\left(\frac{121}{600}+\frac{0.16^{2}}{0.5}\right)
Reduce the fraction \frac{484}{2400} to lowest terms by extracting and canceling out 4.
100\left(\frac{121}{600}+\frac{0.0256}{0.5}\right)
Calculate 0.16 to the power of 2 and get 0.0256.
100\left(\frac{121}{600}+\frac{256}{5000}\right)
Expand \frac{0.0256}{0.5} by multiplying both numerator and the denominator by 10000.
100\left(\frac{121}{600}+\frac{32}{625}\right)
Reduce the fraction \frac{256}{5000} to lowest terms by extracting and canceling out 8.
100\left(\frac{3025}{15000}+\frac{768}{15000}\right)
Least common multiple of 600 and 625 is 15000. Convert \frac{121}{600} and \frac{32}{625} to fractions with denominator 15000.
100\times \frac{3025+768}{15000}
Since \frac{3025}{15000} and \frac{768}{15000} have the same denominator, add them by adding their numerators.
100\times \frac{3793}{15000}
Add 3025 and 768 to get 3793.
\frac{100\times 3793}{15000}
Express 100\times \frac{3793}{15000} as a single fraction.
\frac{379300}{15000}
Multiply 100 and 3793 to get 379300.
\frac{3793}{150}
Reduce the fraction \frac{379300}{15000} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}