Solve for x
x=1200-250\sqrt{23}\approx 1.042119172
x=250\sqrt{23}+1200\approx 2398.957880828
Graph
Share
Copied to clipboard
\left(100\sqrt{x}\right)^{2}=\left(2x+100\right)^{2}
Square both sides of the equation.
100^{2}\left(\sqrt{x}\right)^{2}=\left(2x+100\right)^{2}
Expand \left(100\sqrt{x}\right)^{2}.
10000\left(\sqrt{x}\right)^{2}=\left(2x+100\right)^{2}
Calculate 100 to the power of 2 and get 10000.
10000x=\left(2x+100\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
10000x=4x^{2}+400x+10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+100\right)^{2}.
10000x-4x^{2}=400x+10000
Subtract 4x^{2} from both sides.
10000x-4x^{2}-400x=10000
Subtract 400x from both sides.
9600x-4x^{2}=10000
Combine 10000x and -400x to get 9600x.
9600x-4x^{2}-10000=0
Subtract 10000 from both sides.
-4x^{2}+9600x-10000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9600±\sqrt{9600^{2}-4\left(-4\right)\left(-10000\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 9600 for b, and -10000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9600±\sqrt{92160000-4\left(-4\right)\left(-10000\right)}}{2\left(-4\right)}
Square 9600.
x=\frac{-9600±\sqrt{92160000+16\left(-10000\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-9600±\sqrt{92160000-160000}}{2\left(-4\right)}
Multiply 16 times -10000.
x=\frac{-9600±\sqrt{92000000}}{2\left(-4\right)}
Add 92160000 to -160000.
x=\frac{-9600±2000\sqrt{23}}{2\left(-4\right)}
Take the square root of 92000000.
x=\frac{-9600±2000\sqrt{23}}{-8}
Multiply 2 times -4.
x=\frac{2000\sqrt{23}-9600}{-8}
Now solve the equation x=\frac{-9600±2000\sqrt{23}}{-8} when ± is plus. Add -9600 to 2000\sqrt{23}.
x=1200-250\sqrt{23}
Divide -9600+2000\sqrt{23} by -8.
x=\frac{-2000\sqrt{23}-9600}{-8}
Now solve the equation x=\frac{-9600±2000\sqrt{23}}{-8} when ± is minus. Subtract 2000\sqrt{23} from -9600.
x=250\sqrt{23}+1200
Divide -9600-2000\sqrt{23} by -8.
x=1200-250\sqrt{23} x=250\sqrt{23}+1200
The equation is now solved.
100\sqrt{1200-250\sqrt{23}}=2\left(1200-250\sqrt{23}\right)+100
Substitute 1200-250\sqrt{23} for x in the equation 100\sqrt{x}=2x+100.
2500-500\times 23^{\frac{1}{2}}=2500-500\times 23^{\frac{1}{2}}
Simplify. The value x=1200-250\sqrt{23} satisfies the equation.
100\sqrt{250\sqrt{23}+1200}=2\left(250\sqrt{23}+1200\right)+100
Substitute 250\sqrt{23}+1200 for x in the equation 100\sqrt{x}=2x+100.
2500+500\times 23^{\frac{1}{2}}=500\times 23^{\frac{1}{2}}+2500
Simplify. The value x=250\sqrt{23}+1200 satisfies the equation.
x=1200-250\sqrt{23} x=250\sqrt{23}+1200
List all solutions of 100\sqrt{x}=2x+100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}