Evaluate
\frac{100}{87}\approx 1.149425287
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{3 \cdot 29} = 1\frac{13}{87} = 1.1494252873563218
Share
Copied to clipboard
\begin{array}{l}\phantom{87)}\phantom{1}\\87\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{87)}0\phantom{2}\\87\overline{)100}\\\end{array}
Since 1 is less than 87, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{87)}0\phantom{3}\\87\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{87)}00\phantom{4}\\87\overline{)100}\\\end{array}
Since 10 is less than 87, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{87)}00\phantom{5}\\87\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{87)}001\phantom{6}\\87\overline{)100}\\\phantom{87)}\underline{\phantom{9}87\phantom{}}\\\phantom{87)9}13\\\end{array}
Find closest multiple of 87 to 100. We see that 1 \times 87 = 87 is the nearest. Now subtract 87 from 100 to get reminder 13. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }13
Since 13 is less than 87, stop the division. The reminder is 13. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}