Evaluate
\frac{100}{63}\approx 1.587301587
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{3 ^ {2} \cdot 7} = 1\frac{37}{63} = 1.5873015873015872
Share
Copied to clipboard
\begin{array}{l}\phantom{63)}\phantom{1}\\63\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{63)}0\phantom{2}\\63\overline{)100}\\\end{array}
Since 1 is less than 63, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{63)}0\phantom{3}\\63\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{63)}00\phantom{4}\\63\overline{)100}\\\end{array}
Since 10 is less than 63, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{63)}00\phantom{5}\\63\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{63)}001\phantom{6}\\63\overline{)100}\\\phantom{63)}\underline{\phantom{9}63\phantom{}}\\\phantom{63)9}37\\\end{array}
Find closest multiple of 63 to 100. We see that 1 \times 63 = 63 is the nearest. Now subtract 63 from 100 to get reminder 37. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }37
Since 37 is less than 63, stop the division. The reminder is 37. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}