Evaluate
\frac{20}{11}\approx 1.818181818
Factor
\frac{2 ^ {2} \cdot 5}{11} = 1\frac{9}{11} = 1.8181818181818181
Share
Copied to clipboard
\begin{array}{l}\phantom{55)}\phantom{1}\\55\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{55)}0\phantom{2}\\55\overline{)100}\\\end{array}
Since 1 is less than 55, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{55)}0\phantom{3}\\55\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{55)}00\phantom{4}\\55\overline{)100}\\\end{array}
Since 10 is less than 55, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{55)}00\phantom{5}\\55\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{55)}001\phantom{6}\\55\overline{)100}\\\phantom{55)}\underline{\phantom{9}55\phantom{}}\\\phantom{55)9}45\\\end{array}
Find closest multiple of 55 to 100. We see that 1 \times 55 = 55 is the nearest. Now subtract 55 from 100 to get reminder 45. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }45
Since 45 is less than 55, stop the division. The reminder is 45. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}